已知函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),f(2)=1,f(xy)=f(x)+f(y)
(1)求f(8)的值;
(2)解不等式f(x)+f(x-2)≤3.
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)題意知f(2×2)=f(2)+f(2)=2,f(2×4)=f(2)+f(4)=3,f[x(x-2)]<f(8),
(2)由f(x)的定義域?yàn)椋?,+∞),且在其上為增函數(shù),知x(x-2)<8,即可解得答案.
解答: 解:(1)∵f(xy)=f(x)+f(y),f(2)=1,
∴f(2×2)=f(2)+f(2)=2,
∴f(8)=f(2×4)=f(2)+f(4)=3,
(2)由f(x)+f(x-2)<3,
∴f(x(x-2))≤f(8)
∵函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),
x>0
x-2>0
x(x-2)≤8

解得,2<x<4.
所以不等式f(x)+f(x-2)<3的解集為{x|2<x<4}.
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2x+
1-x2
,求函數(shù)值域(用畫圖法解答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2sinxcosx+2cos2x,(x∈R).
(1)求函數(shù)f(x)的最小正周期和對(duì)稱中心坐標(biāo);
(2)若A為銳角三角形ABC的最大角,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有編號(hào)為A1,A2,…,A10的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):
編號(hào)A1A2A3A4A5A6A7A8A9A10
直徑1.521.471.481.511.491.511.471.461.511.47
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品.
(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件不是一等品的概率;
(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).
(i)用零件的編號(hào)列出所有可能的抽取結(jié)果;
(ii)求這2個(gè)零件直徑均大于1.50的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C與橢圓
x2
8
+
y2
4
=1有相同的焦點(diǎn),直線y=
3
x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,且滿足an+1=an2-nan+1,n=1,2,3,…
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n+1
<ln2
(Ⅲ)當(dāng)0<λ<1時(shí),設(shè)bn=λ(an-
1
2
),cn=(1-λ)an,數(shù)列{
1
bncn
}的前n項(xiàng)和為Tn,求證:Tn
9n-1
4n+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時(shí)滿足以下三個(gè)條件:①對(duì)任意的x∈[0,1],總有f(x)≥0;②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x1)成立,則稱為
.
W
函數(shù),下面四個(gè)命題:
①若函數(shù)f(x)為
.
W
函數(shù),則f(0)=0;
②函數(shù)f(x)=2x-1,x∈[0,1],是
.
W
函數(shù);
.
W
函數(shù)f(x)一定不是單調(diào)函數(shù);
④若函數(shù)f(x)是
.
W
函數(shù),假設(shè)存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0則f(x0)=x0
其中真命題是:
 
.(填上所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題:
(1)若一直線垂直于一個(gè)平面的一條斜線,則該直線必垂直于該斜線在這個(gè)平面內(nèi)的射影;
(2)平面內(nèi)與這個(gè)平面的一條斜線垂直的直線互相平行;
(3)若平面外的兩條直線,在這個(gè)平面上的射影互相垂直,則這兩條直線互相垂直;
(4)若兩條直線互相垂直,且其中的一條平行一個(gè)平面,另一條是這個(gè)平面的斜線,則這兩條直線在這個(gè)平面上的射影互相垂直.
上述命題正確的是
 
.(填寫序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=loga(x2-ax+2)在[2,+∞)恒為正,則實(shí)數(shù)a的范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案