在直四棱柱ABCD-A1B1C1D1中,當?shù)酌嫠倪呅蜛BCD滿足條件________時,有A1C⊥B1D1.(注:填上你認為正確的一種條件即可,不必考慮所有可能的情況)

答案:
解析:

A1C1⊥B1D1或四邊形A1B1C1D1為菱形等


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長為1的正方形,E、G、F分別是棱B1B、D1D、DA的中點.
(Ⅰ)求證:平面AD1E∥平面BGF;
(Ⅱ)求證:D1E⊥平面AEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在直四棱柱ABCD-A1B1C1D1中,已知AB∥CD,AB=AD=1,D1D=CD=2,AB⊥AD.
(I)求證:BC⊥面D1DB;
(II)求D1B與平面D1DCC1所成角的大。
(III)在BB1上是否存在一點F,使F到平面D1BC的距離為
3
3
,若存在,則指出該點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長為1的正方形,E、F分別是棱B1B、DA的中點.
(1)求證:BF∥平面AD1E;
(2)求證:D1E⊥平面AEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直四棱柱ABCD-A1B1C1D1中,點E,F(xiàn)分別在AA1,CC1上,且AE=
3
4
AA1,CF=
1
3
CC1,點A,C到BD的距離之比為3:2,則三棱錐E-BCD和F-ABD的體積比
VE-BCD
VF-ABD
=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直四棱柱ABCD-A1B1C1D1中,底面ABCD為直角梯形,∠BAD=∠ADC=90°,AB=AD=1,CD=CC1=2,E為棱AA1的中點,F(xiàn)為棱BB1上的動點.
(Ⅰ)試確定點F的位置,使得D1E⊥DF;
(Ⅱ)在(Ⅰ)的條件下,求CF與平面EFD1所成角的大小.

查看答案和解析>>

同步練習冊答案