4.已知函數(shù)f(x)=x2+2(a-1)x+b在區(qū)間(-∞,4]上遞減,則a的取值范圍是( 。
A.[-3,+∞)B.(-∞,-3]C.(-∞,5]D.[3,+∞)

分析 由f(x)在區(qū)間(-∞,4]上遞減知:(-∞,4]為f(x)減區(qū)間的子集,由此得不等式,解出即可.

解答 解:f(x)的單調(diào)減區(qū)間為:(-∞,1-a],
又f(x)在區(qū)間(-∞,4]上遞減,
所以(-∞,4]⊆(-∞,1-a],則4≤1-a,解得a≤-3,
所以a的取值范圍是(-∞,-3],
故選:B.

點評 本題考查二次函數(shù)的單調(diào)性,屬基礎題,若函數(shù)f(x)在區(qū)間(a,b)上遞增,則(a,b)為f(x)增區(qū)間的子集.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.在直三棱柱ABC-A1B1C1中,側(cè)棱長為$2\sqrt{3}$,在底面△ABC中,$C=60°,AB=\sqrt{3}$,則此直三棱柱的外接球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某空間幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積是( 。
A.32+8$\sqrt{6}$B.48+8$\sqrt{6}$C.48+8$\sqrt{3}$D.44+8$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.計算
(1)lg 8+lg 125-($\frac{1}{7}$)-2+16${\;}^{\frac{3}{4}}$+($\sqrt{3}$-1)0
(2)已知tanα=3,求$\frac{2sinα-cosα}{sinα+3cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.對數(shù)式log(2x-3)(x-1)中實數(shù)x的取值范圍是($\frac{3}{2}$,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=log3x的反函數(shù)是( 。
A.y=-log3xB.y=3-xC.y=3xD.y=-3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)$f(x)=x+\frac{a}{x},a∈R,g(x)={x^2}-2mx+2,m∈R$
(1)當a<0時,判斷f(x)在(0,+∞)上的單調(diào)性;
(2)當a=-4時,對任意的實數(shù)x1,x2∈[1,2],都有f(x1)≤g(x2),求實數(shù)m的取值范圍;
(3)當$m=\frac{3}{2}時$,$F(x)=\left\{\begin{array}{l}f(x),x<\frac{1}{2}且x≠0\\ g(x),x≥\frac{1}{2}\end{array}\right.$,y=|F(x)|在(0,1)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列說法正確的是( 。
A.若“p或q”為真,則“p且q”也為真
B.命題“若x=2,則x2-5x+6=0”的否命題是“若x=2,則x2-5x+6≠0”
C.已知a,b∈R,命題“若a>b,則|a|>|b|”的逆否命題是真命題
D.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列四個命題中:
①“等邊三角形的三個內(nèi)角均為60°?”的逆命題;
②“若k>0,則方程x2+2x-k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若ab≠0,則a≠0”的否命題.
其中真命題的個數(shù)是①②.

查看答案和解析>>

同步練習冊答案