A組.設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且.

(1)求數(shù)列、的通項(xiàng)公式.

(2)求數(shù)列的前項(xiàng)和.

B組.在數(shù)列中,已知:.

(1)求證:數(shù)列是等比數(shù)列.

(2)求數(shù)列的通項(xiàng)公式.

(3)求和:.

22A.(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,則由題意得方程組:..

(2).   (1)    (2)

(1)-(2)得:

     

22B(1)證:

          

     是等比數(shù)列。

  (2)解:

    

    

      

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,邊長為an的一組正三角形AnBn-1Bn的底邊Bn-1Bn依次排列在x軸上(B0與坐標(biāo)原點(diǎn)重合).設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列,若所有正三角形頂點(diǎn)An在第一象限,且均落在拋物線y2=2px(p>0)上,則
a
d
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省揚(yáng)州中學(xué)2012屆高三最后沖刺熱身數(shù)學(xué)試題 題型:044

n個(gè)首項(xiàng)都是1的等差數(shù)列,設(shè)第m個(gè)數(shù)列的第k項(xiàng)為a(mk)(其中m,k=1,2,3,···,n,n≥3),公差為dm,并且a(1,n),a(2,n),a(3,n),···,a(n,n)成等差數(shù)列.

(1)證明:dmp1d1p2d2(3≤mn,p1p2m的多項(xiàng)式),并求p1p2的值;

(2)當(dāng)d1=1,d2=3時(shí),將數(shù)列{dm}分組如下:(d1),(d2,d3,d4),(d5d6,d7,d8,d9),…(每組數(shù)的個(gè)數(shù)構(gòu)成等差數(shù)列).設(shè)前m組中所有數(shù)之和為(cm)4(cm>0),求數(shù)列{2cm·dm}的前n項(xiàng)和Sn;

(3)設(shè)N是不超過20的正整數(shù),當(dāng)nN時(shí),對于(1)中的Sn,求使得不等式(Sn-6)>dn成立的所有N的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市玉林中學(xué)高一下學(xué)期期中考試數(shù)學(xué) 題型:解答題

((本小題滿分14分)
A組.設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且
.
(1)求數(shù)列、的通項(xiàng)公式.
(2)求數(shù)列的前項(xiàng)和
B組.在數(shù)列中,已知:.
(1)求證:數(shù)列等比數(shù)列.
(2)求數(shù)列的通項(xiàng)公式.
(3)求和:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高一下學(xué)期期中考試數(shù)學(xué) 題型:解答題

((本小題滿分14分)

A組.設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且

.

(1)求數(shù)列、的通項(xiàng)公式.

(2)求數(shù)列的前項(xiàng)和

B組.在數(shù)列中,已知:.

(1)求證:數(shù)列是等比數(shù)列.

(2)求數(shù)列的通項(xiàng)公式.

(3)求和:.

 

查看答案和解析>>

同步練習(xí)冊答案