已知函數(shù)f(x)的定義域?yàn)閇-
1
2
,
3
2
],求函數(shù)g(x)=f(3x)+f(
x
3
)的定義域.
考點(diǎn):函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)的定義域是[-
1
2
3
2
],
∴要使函數(shù)g(x)有意義,
-
1
2
≤3x≤
3
2
-
1
2
x
3
3
2
,即
-
1
6
≤x≤
1
2
-
3
2
≤x≤
9
2
,
解得-
1
6
≤x≤
1
2
,
即函數(shù)g(x)的定義域?yàn)閇-
1
6
,
1
2
]
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos(
2
-φ)=
3
5
,且|φ|<
π
2
,則tanφ為( 。
A、-
4
3
B、
4
3
C、-
3
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-|x-1|,x∈(-∞,2)
1
2
f(x-2),x∈[2,+∞)
,則F(x)=x•[f(x)+
3
10
]-
13
10
在(0,+∞)上的零點(diǎn)個(gè)數(shù)為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出下列函數(shù)的定義域:
(1)g(x)=
x(x-1)
+
x
;
(2)y=
1
x-
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a3=9,a8=29.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn的表達(dá)式;
(Ⅱ)記數(shù)列{
1
anan+1
}的前n項(xiàng)和為T(mén)n,求T100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=4an+2.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程x2-2x-(m-2)=0與x2+mx+
1
4
m2+m+2=0,若這兩個(gè)方程至少有一個(gè)方程有實(shí)數(shù)解,求實(shí)數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b∈R+且3a+2b=2,求ab最大值及a、b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AB是圓O的直徑,D為圓O上一點(diǎn),過(guò)D作圓O的切線(xiàn)交AB延長(zhǎng)線(xiàn)于點(diǎn)C,若DC=2,BC=1,則sin∠DCA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案