【題目】蜂巢是由工蜂分泌蜂蠟建成的從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成,菱形的一個(gè)角度是,這樣的設(shè)計(jì)含有深刻的數(shù)學(xué)原理、我國(guó)著名數(shù)學(xué)家華羅庚曾專門研究蜂巢的結(jié)構(gòu)著有《談?wù)勁c蜂房結(jié)構(gòu)有關(guān)的數(shù)學(xué)問(wèn)題》.用數(shù)學(xué)的眼光去看蜂巢的結(jié)構(gòu),如圖,在六棱柱的三個(gè)頂點(diǎn)A,C,E處分別用平面BFM,平面BDO,平面DFN截掉三個(gè)相等的三棱錐,,平面BFM,平面BDO,平面DFN交于點(diǎn)P,就形成了蜂巢的結(jié)構(gòu).如圖,設(shè)平面PBOD與正六邊形底面所成的二面角的大小為,則有:(

A.B.

C.D.以上都不對(duì)

【答案】C

【解析】

利用第二個(gè)圖:取BF的中點(diǎn)O,連接OAOM,可得.不妨取,在等腰三角形ABF中,,可得OBOA,在中,,進(jìn)而解得二面角.

解:利用第二個(gè)圖:取BF的中點(diǎn)O,連接OA,OM,

,

,

所以即為平面PBOD與正六邊形底面所成的二面角的平面角,

不妨取

在等腰三角形ABF中,

,

中,

,

解得:,

中,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圖的右頂點(diǎn)與拋物線的焦點(diǎn)重合,橢圓的離心率為,過(guò)橢圓的右焦點(diǎn)且垂直于軸的直線截拋物線所得的弦長(zhǎng)為.

1)求橢圓和拋物線的方程;

2)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.當(dāng)直線繞點(diǎn)旋轉(zhuǎn)時(shí),直線是否經(jīng)過(guò)一定點(diǎn)?請(qǐng)判斷并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】千百年來(lái),我國(guó)勞動(dòng)人民在生產(chǎn)實(shí)踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識(shí)天氣”的經(jīng)驗(yàn),并將這些經(jīng)驗(yàn)編成諺語(yǔ),如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗(yàn)證“日落云里走,雨在半夜后”,觀察了所在地區(qū)天日落和夜晚天氣,得到如下列聯(lián)表:

夜晚天氣日落云里走

下雨

未下雨

出現(xiàn)

未出現(xiàn)

參考公式:.

臨界值表:

1)根據(jù)上面的列聯(lián)表判斷能否有的把握認(rèn)為“當(dāng)晚下雨”與“‘日落云里走’出現(xiàn)”有關(guān)?

2)小波同學(xué)為進(jìn)一步認(rèn)識(shí)其規(guī)律,對(duì)相關(guān)數(shù)據(jù)進(jìn)行分析,現(xiàn)從上述調(diào)查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再?gòu)倪@天中隨機(jī)抽出天進(jìn)行數(shù)據(jù)分析,求抽到的這天中僅有天出現(xiàn)“日落云里走”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的焦點(diǎn)為FQ是拋物線上的一點(diǎn),

(Ⅰ)求拋物線C的方程;

(Ⅱ)過(guò)點(diǎn)作直線l與拋物線C交于M,N兩點(diǎn),在x軸上是否存在一點(diǎn)A,使得x軸平分?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】割圓術(shù)是我國(guó)古代計(jì)算圓周率的一種方法.在公元年左右,由魏晉時(shí)期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時(shí)劉微就是利用這種方法,把的近似值計(jì)算到之間,這是當(dāng)時(shí)世界上對(duì)圓周率的計(jì)算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來(lái)逼近未知的、要求的,用有限的來(lái)逼近無(wú)窮的.為此,劉微把它概括為割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”.這種方法極其重要,對(duì)后世產(chǎn)生了巨大影響,在歐洲,這種方法后來(lái)就演變?yōu)楝F(xiàn)在的微積分.根據(jù)割圓術(shù),若用正二十四邊形來(lái)估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù)

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn),與軸相交于點(diǎn).

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】陽(yáng)馬和鱉臑(bienao)是《九章算術(shù)·商功》里對(duì)兩種錐體的稱謂.如圖所示,取一個(gè)長(zhǎng)方體,按下圖斜割一分為二,得兩個(gè)模一樣的三棱柱,稱為塹堵(如圖).再沿其中一個(gè)塹堵的一個(gè)頂點(diǎn)與相對(duì)的棱剖開,得四棱錐和三棱錐各一個(gè),有一棱與底面垂直的四棱錐稱為陽(yáng)馬(四棱錐)余下三棱錐稱為鱉臑(三棱錐)若將某長(zhǎng)方體沿上述切割方法得到一個(gè)陽(yáng)馬一個(gè)鱉臑,且該陽(yáng)馬的正視圖和鱉臑的側(cè)視圖如圖所示,則可求出該陽(yáng)馬和鱉臑的表面積之和為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校打算在長(zhǎng)為1千米的主干道一側(cè)的一片區(qū)域內(nèi)臨時(shí)搭建一個(gè)強(qiáng)基計(jì)劃高校咨詢和宣傳臺(tái),該區(qū)域由直角三角形區(qū)域為直角)和以為直徑的半圓形區(qū)域組成,點(diǎn)(異于)為半圓弧上一點(diǎn),點(diǎn)在線段上,且滿足.已知,設(shè),且.初步設(shè)想把咨詢臺(tái)安排在線段,上,把宣傳海報(bào)懸掛在弧和線段.

1)若為了讓學(xué)生獲得更多的咨詢機(jī)會(huì),讓更多的省內(nèi)高校參展,打算讓最大,求該最大值;

2)若為了讓學(xué)生了解更多的省外高校,貼出更多高校的海報(bào),打算讓弧和線段的長(zhǎng)度之和最大,求此時(shí)的的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案