【題目】已知函數(shù)f(x)的定義域為D,若對于a,b,c∈D,f(a),f(b),f(c)分別為某個三角形的邊長,則稱f(x)為“三角形函數(shù)”.給出下列四個函數(shù): ①f(x)=lnx(e2≤x≤e3);②f(x)=4﹣cosx;③ ;④ .
其中為“三角形函數(shù)”的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:對于①,f(x)=lnx(e2≤x≤e3), 對于a,b,c∈[e2 , e3],f(a),f(b),f(c)∈[2,3],
∴f(a),f(b),f(c)分別為某個三角形的邊長,故①是“三角形函數(shù)”;
在②中,f(x)=4﹣cosx,對于a,b,c∈D,f(a),f(b),f(c)∈[3,5],
∴f(a),f(b),f(c)分別為某個三角形的邊長,故②是“三角形函數(shù)”;
在③中, ,對于a,b,c∈(1,4),f(a),f(b),f(c)∈(1,2),
∴f(a),f(b),f(c)為某個三角形的邊長,故③是“三角形函數(shù)”;
在④中, ,對于a,b,c∈D,f(a),f(b),f(c)∈(0,1),
∴f(a),f(b),f(c)不一定是某個三角形的邊長,故④不是“三角形函數(shù)”.
故選:C.
利用“三角形函數(shù)”的定義,分別判斷所給的四個函數(shù),能求出結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(x+ )cos(x+ )的圖象沿x軸向右平移 個單位后,得到一個偶函數(shù)的圖象,則φ的取值不可能是( )
A.
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,函數(shù)f(x)的圖象記為曲線C.
(1)若函數(shù)f(x)在[0,+∞)上單調(diào)遞增,求c的取值范圍;
(2)若函數(shù)y=f(x)﹣m有兩個零點α,β(α≠β),且x=α為f(x)的極值點,求2α+β的值;
(3)設(shè)曲線C在動點A(x0 , f(x0))處的切線l1與C交于另一點B,在點B處的切線為l2 , 兩切線的斜率分別為k1 , k2 , 是否存在實數(shù)c,使得 為定值?若存在,求出c的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC內(nèi)角∠BAC的角平分線.
(1)用正弦定理證明: ;
(2)若∠BAC=120°,AB=2,AC=1,求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,an≠0,2anan+1=tSn﹣2,其中t為常數(shù). (Ⅰ)設(shè)bn=an+1+an , 求證:{bn}為等差數(shù)列;
(Ⅱ)若t=4,求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域為( )
A.( ,9)
B.[ ,9]
C.(0, ]∪[9,+∞)
D.(0, )∪(9,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點F在平面ABED內(nèi)的正投影為G,且G在AE上,點M是在線段CF上,且CM= CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集A={a1 , a2 , …,an}(1=a1<a2<…<an , n≥2)具有性質(zhì)P:對任意的k(2≤k≤n),i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分別判斷數(shù)集{1,3,4}與{1,2,3,6}是否具有性質(zhì)P,并說明理由;
(Ⅱ)求證:an≤2a1+a2+…+an﹣1(n≥2);
(Ⅲ)若an=72,求數(shù)集A中所有元素的和的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com