16.已知邊長(zhǎng)為$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿對(duì)角線BD折成二面角為120°的四面體,則四面體的外接球的表面積為28π.

分析 取BD的中點(diǎn)E,連AE,CE,外接球球心在面ACE內(nèi),OG⊥CE,OE垂直平分AC,其中CG=2GE=2,∠CEA=120°,可得四面體的外接球的半徑,即可求出四面體的外接球的表面積.

解答 解:如圖1,取BD的中點(diǎn)E,連AE,CE.
由已知條件,面ACE⊥面BCD.則外接球球心在面ACE內(nèi),
如圖2,OG⊥CE,OE垂直平分AC,其中CG=2GE=2,∠CEA=120°
∴$OG=GE•tan6{0}^{°}=\sqrt{3}$,
得$R=OC=OA=\sqrt{7}$,外接球的表面積為28π.
故答案為:28π.

點(diǎn)評(píng) 本題考查四面體的外接球的表面積,考查學(xué)生的計(jì)算能力,求出四面體的外接球的半徑是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù),,則的解析式是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.定義在(-1,1)上的函數(shù)f(x)=1+x-$\frac{x^2}{2}+\frac{x^3}{3}-…-\frac{{{x^{2016}}}}{2016}$,設(shè)F(x)=f(x+4),且F(x)的零點(diǎn)均在區(qū)間(a,b)內(nèi),其中a,b∈z,a<b,則圓x2+y2=b-a的面積的最小值為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在平行四邊形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AD}$|=$\sqrt{3}$,若將其沿BD折成直二面角A-BD-C,則三棱錐A-BDC的外接球的表面積為(  )
A.16πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知A(0,1)和直線l:x=-5,拋物線y2=4x上動(dòng)點(diǎn)P到l的距離為d,則|PA|+d的最小值是( 。
A.6B.$5+\sqrt{2}$C.$4+\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知底面邊長(zhǎng)為a的正三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)在球O1上,又知球O2與此正三棱柱的5個(gè)面都相切,求球O1與球O2的表面積之比為5:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=4t\\ y=3t-1\end{array}$(t為參數(shù)),當(dāng)t=0時(shí),曲線C1上對(duì)應(yīng)的點(diǎn)為 P.以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=$\frac{8cosθ}{1-cos2θ}$.
(I)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C1與C2的公共點(diǎn)為A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.計(jì)算:3${\;}^{lo{g}_{9}64}$=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=4,EF=3,AD=AE=BE=2,G是BC的中點(diǎn).
(1)求證:BD⊥EG;
(2)求二面角G-DE-F的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案