4.若函數(shù)f(x)=aex-x有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$).

分析 對(duì)f(x)求導(dǎo),討論f′(x)的正負(fù)以及對(duì)應(yīng)f(x)的單調(diào)性,得出函數(shù)y=f(x)有兩個(gè)零點(diǎn)的等價(jià)條件,從而求出a的取值范圍;

解答 解:∵f(x)=aex-x,∴f′(x)=aex-1;
下面分兩種情況討論:
①a≤0時(shí),f′(x)<0在R上恒成立,∴f(x)在R上是減函數(shù),不合題意;
②a>0時(shí),由f′(x)=0,得x=-lna,當(dāng)x變化時(shí),f′(x)、f(x)的變化情況如下表:

x(-∞,-lna)-lna(-lna,+∞)
f′(x)-0+-
f(x)遞減極小值-lna-1遞增
∴f(x)的單調(diào)減區(qū)間是(-∞,-lna),增區(qū)間是(-lna,+∞);
∴函數(shù)y=f(x)有兩個(gè)零點(diǎn)等價(jià)于如下條件同時(shí)成立:
(i)f(-lna)>0,(ii)存在s1∈(-∞,-lna),滿足f(s1)<0,(iii)存在s2∈(-lna,+∞),滿足f(s2)<0;
由f(-lna)>0,即-lna-1>0,解得0<a<e-1;
取s1=0,滿足s1∈(-∞,-lna),且f(s1)=-a<0,
取s2=$\frac{2}{a}$+ln$\frac{2}{a}$,滿足s2∈(-lna,+∞),且f(s2)=($\frac{2}{a}$-e$\frac{2}{a}$)+(ln$\frac{2}{a}$-e$\frac{2}{a}$)<0;
∴a的取值范圍是(0,e-1).
故答案為:(0,$\frac{1}{e}$).

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與零點(diǎn)問(wèn)題,也考查了函數(shù)思想、化歸思想和分析問(wèn)題、解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列表示正確的是( 。
A.∅∈{0}B.{3}∈{1,3}C.0⊆{0,1}D.∅⊆{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.△ABC中,已知角A,B,C所對(duì)的邊分別為a,b,c,$\frac{cosA}{a}$+$\frac{cosC}{c}$=$\frac{1}$,b=4,且a>c.
(1)求ac的值;
(2)若△ABC的面積為2$\sqrt{7}$,求a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖所示,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,過(guò)F的直線l交雙曲線的漸近線于A,B兩點(diǎn),且直線l的傾斜角是漸近線OA傾斜角的2倍,若$\overrightarrow{AF}=2\overrightarrow{FB}$,則該雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖,則該幾何體的體積為( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知cos($\frac{π}{2}$+α)=$\frac{3}{5}$,則α∈($\frac{π}{2}$,$\frac{3π}{2}$),則sin2α=( 。
A.-$\frac{24}{25}$B.-$\frac{16}{25}$C.$\frac{24}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在等差數(shù)列{an}中,a1=1,a3+a5=3,若a1,a7,an成等比數(shù)列,則n=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知點(diǎn)A(7,1),B(1,a),若直線y=x與線段AB交于點(diǎn)C,且$\overrightarrow{AC}=2\overrightarrow{CB}$,則實(shí)數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$的模分別為2和3,且?jiàn)A角為60°,則|$\overrightarrow{a}$+$\overrightarrow$|等于(  )
A.$\sqrt{13}$B.13C.$\sqrt{19}$D.19

查看答案和解析>>

同步練習(xí)冊(cè)答案