分析 (1)利用正弦定理,結(jié)合和角的正弦公式,即可得出結(jié)論.
(2)由已知利用三角形面積公式可求bc的值,利用余弦定理可求b+c的值,即可得解.
解答 解:(1)由$\frac{2b-c}{a}$=$\frac{cosC}{cosA}$,
利用正弦定理可得2sinBcosA-sinCcosA=sinAcosC,
化為2sinBcosA=sin(C+A)=sinB,
∵sinB≠0,
∴cosA=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(2)∵A=$\frac{π}{3}$,△ABC的面積為$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$,
∴bc=2,
∵a=$\sqrt{5}$,由余弦定理a2=b2+c2-2bccosA,可得:5=b2+c2-bc=(b+c)2-3bc=(b+c)2-6,
∴解得:b+c=$\sqrt{11}$,
∴△ABC的周長l=a+b+c=$\sqrt{5}$+$\sqrt{11}$.
點(diǎn)評(píng) 本題考查正弦定理,和角的正弦公式,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$或$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$或$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com