7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$\frac{2b-c}{a}$=$\frac{cosC}{cosA}$.
(1)求角A的值;
(2)若△ABC的面積為$\frac{\sqrt{3}}{2}$,且a=$\sqrt{5}$,求△ABC的周長.

分析 (1)利用正弦定理,結(jié)合和角的正弦公式,即可得出結(jié)論.
(2)由已知利用三角形面積公式可求bc的值,利用余弦定理可求b+c的值,即可得解.

解答 解:(1)由$\frac{2b-c}{a}$=$\frac{cosC}{cosA}$,
利用正弦定理可得2sinBcosA-sinCcosA=sinAcosC,
化為2sinBcosA=sin(C+A)=sinB,
∵sinB≠0,
∴cosA=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(2)∵A=$\frac{π}{3}$,△ABC的面積為$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$,
∴bc=2,
∵a=$\sqrt{5}$,由余弦定理a2=b2+c2-2bccosA,可得:5=b2+c2-bc=(b+c)2-3bc=(b+c)2-6,
∴解得:b+c=$\sqrt{11}$,
∴△ABC的周長l=a+b+c=$\sqrt{5}$+$\sqrt{11}$.

點(diǎn)評(píng) 本題考查正弦定理,和角的正弦公式,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.己知f(x)=loga(ax-1)(a>1).求:
(1)函數(shù)f(x)的定義城;
(2)求使f(2x)=f-1(x)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sinxcosx+\frac{cos2x}{2}+3{sin^2}x+\frac{1}{2}$.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位,再向下平移2個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間上$[{-\frac{π}{6},-\frac{π}{12}}]$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示,且$A({\frac{π}{2},1}),B({π,-1})$,則φ值為-$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F$(-\sqrt{2},0)$,離心率e=$\frac{\sqrt{2}}{2}$,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:$\overrightarrow{OP}=\overrightarrow{OM}+2\overrightarrow{ON}$,直線OM與ON的斜率之積為-$\frac{1}{2}$,問:是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$經(jīng)過橢圓C的三個(gè)頂點(diǎn),則橢圓C的離心率為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-x-m(m∈R).
(1)求f(x)的最小值;
(2)判斷f(x)的零點(diǎn)個(gè)數(shù),說明理由;
(3)若f(x)有兩個(gè)零點(diǎn)x1、x2,證明:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.要做一個(gè)無蓋型容器,將長為15cm,寬為8cm的長方形鐵皮先在四角分別截去一個(gè)相同的小正方形后再進(jìn)行焊接,當(dāng)該容器容積最大時(shí)高為$\frac{5}{3}$cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.觀察下列砌鋼管的橫截面圖:

則第n個(gè)圖的鋼管數(shù)是$\frac{3}{2}{n^2}+\frac{3}{2}n$.(用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案