已知m∈[0,4],則曲線(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦點在于y軸上的橢圓的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:求出曲線(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦點在于y軸上的橢圓,m的取值,再以長度為測度,即可求得結(jié)論.
解答: 解:∵曲線(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦點在于y軸上的橢圓,
∴m-1>3-m>0,
∴1<m<3,長度為2,
∵m∈[0,4],
∴長度為4,
∴曲線(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦點在于y軸上的橢圓的概率為
2
4
=
1
2

故答案為:
1
2
點評:本題考查幾何概型,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若正實數(shù)x,y滿足x+y+
1
x
+
1
y
=5,則x+y的最大值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=4x的焦點為F,過F且斜率為1的直線交拋物線于A、B兩點,動點P在曲線y2=-4x(y≥0)上,則△ABP的面積的最小值為( 。
A、1
B、6
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(2,5),g(x)=(x+a)f(x),g(x)的導(dǎo)函數(shù)為g′(x)
(Ⅰ)若曲線y=g(x)有斜率為0的切線,求實數(shù)a的取值范圍;
(Ⅱ)若g′(-1)=0,求y=g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=8,前10項和S10=185.
(1)求數(shù)列{an}的通項公式an
(2)若從數(shù)列{an}中依次取出2,4,6,8,…2n項按照原來的順序排成一個新的數(shù)列,求新數(shù)列的前n項和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點,
OA
=(2cos2x,1),
OB
=(1,
3
sin2x+a)(x∈R,a∈R,a是常數(shù)),若y=
OA
OB

(Ⅰ)求y關(guān)于x的函數(shù)解析式f(x);
(Ⅱ)若x∈[0,
π
2
]時,f(x)的最大值為2,求a的值并指出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-2,0),B(0,2),實數(shù)k是常數(shù),M,N是圓x2+y2+kx=0上兩個不同點,且M,N關(guān)于直線x-y-1=0對稱,若P是圓x2+y2+kx=0上的動點,則△PAB面積的最大值是( 。
A、3-
2
B、4
C、3+
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(-1,0)到直線12x+5y-1=0的距離是(  )
A、
6
13
B、1
C、
13
D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a>0,函數(shù)f(x)=a(x-2)2+2lnx,g(x)=f(x)-4a+
1
4a

(1)當(dāng)a=1時,討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)在區(qū)間[1,4]上是增函數(shù),求實數(shù)a的取值范圍;
(3)若當(dāng)x∈[2,+∞)時,函數(shù)g(x)圖象上的點均在不等式y(tǒng)≥x,所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案