已知集合A={x|x2-2ax+a2-1<0},B={x|
x+1
ax-2
}
,命題P:2∈A,命題q:1∈B,若復(fù)合命題“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.
A={x|x2-2ax+a2-1<0)={x|a-1<x<a+1}
P:有2∈A,可得a-1<2<a+1,則1<a<3
即P:1<a<3(4分)
由1∈B={x|
x+1
ax-2
>1
}得
2
a-2
>1

2
a-2
-1>0

4-a
a-2
>0

即q:2<a<4(8分)
∵命題“p或q”為真命題,“p且q”為假命題
∴p,q一個(gè)為真,一個(gè)為假
當(dāng)p為真,q為假時(shí),則
1<a<3
a≤2或a≥4
即1<a≤2
當(dāng)p為假,q為真時(shí),則a
a≤1或a≥3
2<a<4
即3≤a<4
綜上可得,1<a≤2或3≤a<4(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥1},B={x|x>2},則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德陽三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案