15.f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,若f(x)=10,則x=-3.

分析 利用函數(shù)的解析式列出方程求解即可.

解答 解:f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤0)}\\{-2x(x>0)}\end{array}\right.$,若f(x)=10,
可得x2+1=10,解得x=-3.x=3(舍去)
故答案為:-3.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{y≥0}\end{array}\right.$,則z=(x+1)2+(y-2)2的最小值是$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),購(gòu)買家庭轎車已不再是一種時(shí)尚.隨著使用年限的增加,車的維修與保養(yǎng)的總費(fèi)用到底會(huì)增加多少一直是購(gòu)車一族非常關(guān)心的問題.某汽車銷售公司做一次抽樣調(diào)查,得出車的使用年限x(單位:年)與維修與保養(yǎng)的總費(fèi)用y(單位:千元)的統(tǒng)計(jì)結(jié)果如表:
使用年限x23456
維修與保養(yǎng)的總費(fèi)用y23569
根據(jù)此表提供的數(shù)據(jù)可得回歸直線方程$\stackrel{∧}{y}$=1.7x+$\hat a$,據(jù)此估計(jì)使用年限為10年時(shí),該款車的維修與保養(yǎng)的總費(fèi)用大概是(  )
A.15200B.12500C.15300D.13500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若tanα=-2,則sin2α+sinαcosα=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)關(guān)于x的不等式mx2+6mx+m+8≥0在R上恒成立,求m的取值范圍;
(2)對(duì)于集合A={x|x2-2ax+4a-3=0},B={x|x2-2$\sqrt{2}$x+a2+a+2=0}是否存在實(shí)數(shù)a,使A∪B=∅?若存在,求出a的取值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為2,以雙曲線C的實(shí)軸為直徑的圓記為圓O,過點(diǎn)F2作圓O的切線,切點(diǎn)為P,則以F1,F(xiàn)2為焦點(diǎn),過點(diǎn)P的橢圓T的離心率為( 。
A.$\frac{{\sqrt{5}-\sqrt{3}}}{2}$B.$\sqrt{5}-\sqrt{3}$C.$\frac{{\sqrt{7}-\sqrt{3}}}{4}$D.$\sqrt{7}-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正四棱錐S-ABCD的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都等于2,點(diǎn)E是棱SB的中點(diǎn),則直線AE與直線SD所成的角的余弦值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)U={0,-1,-2,-3,-4},M={0,-1,-2},N={0,-3,-4},則(∁UM)∩N等于( 。
A.{0}B.{-1,-2}C.{-3,-4}D.{-1,-2,-3,-4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知△ABC的三個(gè)內(nèi)角為A,B,C,若函數(shù)f(x)=x2-xcosA•cosB-cos2$\frac{C}{2}$有一零點(diǎn)為1,則△ABC一定是( 。
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案