已知函數(shù)f(x)=x3+a•x2+bx+c的圖象上的一點(diǎn)M(1,m)處的切線的方程為y=2,其中a,b,c∈R.
(1)若a=-3,求f(x)的解析式,并表示成f(x)=(x+t)3+k,(t,k為常數(shù));
(2)問(wèn)函數(shù)y=f(x)是否有單調(diào)減區(qū)間,若存在,求單調(diào)減區(qū)間(用a表示),若不存在,請(qǐng)說(shuō)明理由.
分析:(1)先求出函數(shù)在x=1處的導(dǎo)數(shù),得到切線的斜率,建立一等式,再根據(jù)切點(diǎn)在函數(shù)圖象上,建立另一等式,解方程組即可求出所求;
(2)先求導(dǎo)函數(shù),然后f′(x)=0,討論兩根的大小,將a分為三種情形,再分別求出對(duì)應(yīng)的單調(diào)減區(qū)間.
解答:(本小題滿分12分)
解:(1)f′(x)=3x2+2a•x+b⇒f′(1)=3+2a+b=0
由∵m=2⇒f(1)=1+a+b+c=2∵a=-3⇒b=3,c=1,f(x)=x3-3x2+3x+1=(x-1)3+2…(4分)
(2)f′(x)=3x2+2a•x+b由(1)知b=-2a-3
所以 f′(x) =3x2+2a•x-(2a+3)=3(x+
2a+3
3
)•(x-1)
…(6分)
f′(x) =0⇒x=-
2a+3
3
,x=1
…(8分)
當(dāng)-
2a+3
3
=1?a=-3
即f′(x)=3(x-1)2≥0
∵f(x)為R上為增函數(shù),所以函數(shù)沒(méi)有單調(diào)減區(qū)間;          …(9分)
當(dāng)-
2a+3
3
>1?a<-3
時(shí),可以判定f(x)單調(diào)減區(qū)間為(1,-
2a+3
3
)
…(10分)
當(dāng)-
2+3a
3
<1?a>-3
時(shí),可以判定f(x)單調(diào)減區(qū)間為(-
2a+3
3
,1)
…(11分)
綜上:a=-3,函數(shù)沒(méi)有單調(diào)減區(qū)間;a<-3,f(x)單調(diào)減區(qū)間為(1,-
2a+3
3
)
;
a>-3,f(x)單調(diào)減區(qū)間為(-
2a+3
3
,1)
.…(12分)
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,同時(shí)考查了分類討論的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案