已知曲線C:x2+y2=2,點A(-2,0)及點B(2,a),以點A觀察點B,要使視線不被曲線C擋住,則a的取值范圍是

A.(-∞,-4)∪(4,+∞)                             B.(-∞,-1)∪(1,+∞)

C.[-4,4]                                    D.(-∞,-2)∪(2,+∞)

A  設過A的圓切線方程為y=k(x+2),即kx-y+2k=0.

d=,∴k=±1.

∴切線y=x+2或y=-x-2.

∴B(2,4)或(2,-4).故a>4或a<-4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知曲線C:y=-x2+x+2關(guān)于點M(-1,-2)對稱的曲線為Cn,且曲線C與Cn有兩個不同的交點A、B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:y=-x2+x+2關(guān)于點M(a,2a)對稱的曲線為Cn,且曲線C與Cn有兩個不同的交點A、B,設直線AB的斜率為k,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:y=
9-x2
,與直線l:y=x+b沒有公共點,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C?x2-y2=1及直線l:y=kx-1.
(1)若l與C左支交于兩個不同的交點,求實數(shù)k的取值范圍;
(2)若l與C交于A、B兩點,O是坐標原點,且△AOB的面積為
2
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:y=
1-x2
與直線l:y=2x+k,當k為何值時,l與C:①有一個公共點;②有兩個公共點;③沒有公共點.

查看答案和解析>>

同步練習冊答案