【題目】片森林原來(lái)面積為a,計(jì)劃每年砍伐森林面積是上一年末森林面積的p%,當(dāng)砍伐到原來(lái)面積的一半時(shí),所用時(shí)間是10年,已知到今年末為止,森林剩余面積為原來(lái)面積的,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原來(lái)面積的

(1)求每年砍伐面積的百分比p%;

(2)到今年為止,該森林已砍伐了多少年?

(3)今年以后至多還能再砍伐多少年?

【答案】(1)p%=1-; (2)該森林已砍伐了5年; (3)以后最多還能再砍伐15年.

【解析】

(1)根據(jù)每年砍伐面積的百分比,當(dāng)砍伐到面積的一半時(shí),所用時(shí)間是10年,結(jié)合等比數(shù)列可建立方程,解之即可得到每年砍伐面積的百分比;

(2)根據(jù)題意:到今年為止,森林剩余面積為原來(lái)的.可列出關(guān)于的等式, 解之即可;

(3)根據(jù)題意,求出砍伐年后剩余面積,由題意,建立關(guān)于的不等關(guān)系, 求出即可;

(1)由題意可得,a(1-p%)10=,

解得p%=1-,

∴每年砍伐面積的百分比p%=1-;

(2)設(shè)經(jīng)過(guò)m年剩余面積為原來(lái)的

則a(1-p%)m=a,

∴(1-p%)m==,

由(1)可得,1-p%=

,=,解得m=5,

故到今年至末為止,該森林已砍伐了5年.

(3)設(shè)今后至多還能再砍伐n年,

化簡(jiǎn)可得,

∴n≤15故今年以后最多還能再砍伐15年.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示.據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下表所示.

0

1

2

3

0.1

0.3

(1)求的值和的數(shù)學(xué)期望;

(2)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex ,g(x)=2ln(x+1)+ex
(1)x∈(﹣1,+∞)時(shí),證明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)當(dāng)=-1時(shí),求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn),和直線相切,且圓心在直線上.

(1)求圓的方程;

(2)已知直線經(jīng)過(guò)原點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明;

(2)若對(duì)恒成立,求的取值范圍;

(3)討論的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的單調(diào)減區(qū)間是。

(1)求的解析式;

(2)若對(duì)任意的,關(guān)于的不等式

時(shí)有解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C 的長(zhǎng)軸長(zhǎng)為4,焦距為.

Ⅰ)求橢圓C的方程;

Ⅱ)過(guò)動(dòng)點(diǎn)M0,m)(m>0)的直線交x軸與點(diǎn)N,交C于點(diǎn)A,PP在第一象限),且M是線段PN的中點(diǎn),過(guò)點(diǎn)Px軸的垂線交C于另一點(diǎn)Q,延長(zhǎng)線QMC于點(diǎn)B.

i)設(shè)直線PMQM的斜率分別為k、,證明為定值.

ii)求直線AB的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1證明 , 不可能成等差數(shù)列;

2證明: , 不可能為同一等差數(shù)列中的三項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案