(12分)在銳角三角形ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,且b2+c2=bc+a2

    (1)求∠A;

    (2)若a=,求b2+c2的取值范圍。

 

【答案】

 

(1)

(2)5<b2+c2≤6…

【解析】①由余弦定理知:cosA=

    ∴∠A=…………………………………………………5分

    ②由正弦定理得:

    ∴b=2sinB,c=2sinC

    ∴b2+c2=4(sin2B+sin2C)=2(1-cos2B+1-cos2C)

    =4-2cos2B-2cos2(-B)

    =4-2cos2B-2cos(-2B)

    =4-2cos2B-2(-cos2B-sin2B)

    =4-cos2B+sin2B

=4+2sin(2B-)

又∵<∠B<

<2B-

∴1<2sin(2B-)≤2

∴5<b2+c2≤6…………………………………………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角三角形ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=2bsinA.
(1)求∠B的大小;
(2)若a=3
3
,c=5
,求邊b的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角三角形ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且滿足
3
a-2bsinA=0

(Ⅰ)求角B的大;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角三角形ABC中,a,b,c分別是角A、B、C的對(duì)邊,
p
=(a+c,b),
q
=(c-a,b-c)且
p
q

(1)求A的大小;
(2)記f(B)=2sin2B+sin(2B+
π
6
)
,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南充一模)在銳角三角形ABC中,角A,B,C對(duì)邊a,b,c且a2+b2-
2
ab=c2,tanA-tanB=csc2A
①求證:2A-B=
π
2
;
②求三角形ABC三個(gè)角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:在銳角三角形ABC中,?A,B,使sinA<cosB;命題q:?x∈R,都有x2+x+1>0,給出下列結(jié)論:
①命題“p∧q”是真命題;           
②命題“¬p∨q”是真命題;
③命題“¬p∨¬q”是假命題;       
④命題“p∧¬q”是假命題;
其中正確結(jié)論的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案