【題目】已知函數(shù)的圖象向右平移兩個(gè)單位,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個(gè)實(shí)根,求的取值范圍;

(3)若函數(shù)的圖象關(guān)于直線對(duì)稱,設(shè),已知對(duì)任意的恒成立,求的取值范圍.

【答案】(1)(2)(3)

【解析】試題分析:(Ⅰ)由圖象的平移可得g(x)的解析式;

(Ⅱ)設(shè),問(wèn)題轉(zhuǎn)化為t[1,2]上有且僅有一個(gè)實(shí)根,通過(guò)分類討論的思想得到結(jié)果

Ⅲ)設(shè),t(2,+∞).問(wèn)題轉(zhuǎn)化為t2﹣4at+4a0對(duì)任意t(2,+∞)恒成立,變量分離后構(gòu)造函數(shù),可得其最小值,進(jìn)而可得答案.

試題解析:

(1)

(2)設(shè),則,原方程可化為

于是只須上有且僅有一個(gè)實(shí)根,

法1:設(shè),對(duì)稱軸t=,則 ① , 或

由①得 ,即,

由②得 無(wú)解, ,則。

法2:由,得, ,

設(shè),則, ,記

上是單調(diào)函數(shù),因?yàn)楣室诡}設(shè)成立,

只須,即,

從而有

(3)設(shè)的圖像上一點(diǎn),點(diǎn)關(guān)于的對(duì)稱點(diǎn)為

由點(diǎn)的圖像上,所以,

于是. .

,化簡(jiǎn)得,設(shè),恒成立.

注意到t﹣11,分離參數(shù)得對(duì)任意t(2,+∞)恒成立.

設(shè), t(2,+∞),

可證m(t)在(2,+∞)上單調(diào)遞增.

m(t)m(2)=4,

,即a(﹣,1]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

)是否存在常數(shù),當(dāng)時(shí), 在值域?yàn)閰^(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=4 x的焦點(diǎn)為F,A、B為拋物線上兩點(diǎn),若 =3 ,O為坐標(biāo)原點(diǎn),則△AOB的面積為(
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=xlnx+ax,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若對(duì)x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 若an+1+(﹣1)nan=n,則S40=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄AM恒過(guò)點(diǎn)(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動(dòng)直線l過(guò)點(diǎn)P(0,﹣2),且與點(diǎn)M的軌跡交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于y軸對(duì)稱,求證:直線AC恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1將根式化為分式指數(shù)冪的形式;

2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙二人參加某體育項(xiàng)目訓(xùn)練,近期的五次測(cè)試成績(jī)得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結(jié)果,對(duì)兩人的訓(xùn)練成績(jī)作出評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定義域上為減函數(shù),若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k為常數(shù))恒成立.求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案