分析 利用已知條件求出Q坐標,求出P的坐標,代入雙曲線方程,即可求解雙曲線的離心率.
解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2,P為雙曲線C上一點,Q為雙曲線C漸近線上一點,P、Q均位于第一象限,且$\overrightarrow{QP}$=$\overrightarrow{P{F}_{2}}$,$\overrightarrow{Q{F}_{1}}$•$\overrightarrow{Q{F}_{2}}$=0,
可知P是Q,F(xiàn)2的中點,$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,
Q在直線bx-ay=0上,并且|OP|=c,則Q(a,b),則P($\frac{a+c}{2}$,$\frac{2}$),
代入雙曲線方程可得:$\frac{(a+c)^{2}}{4{a}^{2}}-\frac{1}{4}=1$,
1+e=$\sqrt{5}$.
可得e=$\sqrt{5}$-1.
故答案為:$\sqrt{5}-1$.
點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,離心率的求法,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{4}{3}$ | C. | -$\frac{1}{7}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | ||
C. | 2個 | D. | 不確定,隨k的變化而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A=4 | B. | ω=1 | C. | φ=$\frac{π}{6}$ | D. | B=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+|x+y|+|xy|≥|x|+|y| | B. | 1+2|x+y|≥|x|+|y| | C. | 1+2|xy|≥|x|+|y| | D. | |x+y|+2|xy|≥|x|+|y| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 90° | C. | 120° | D. | 135° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com