橢圓和圓(其中c為橢圓半焦距)有四個不同的交點,則橢圓離心率的范圍是:

[  ]

A.

B.

C.

D.

答案:A
解析:

  要有四個交點只須b<r<a,∴b<b/2+c<a,∴2c>b,∴a2=c2+b2<5c2

  ∵b2<4(a-c)2∴a2-c2<4(a-c)2,∴a+c<4(a-c),∴5c<3a,∴e<3/5.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

A組:直角坐標系xoy中,已知中心在原點,離心率為
1
2
的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設P是橢圓E上一點,過P作兩條斜率之積為
1
2
的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.
B組:如圖,在平面直角坐標系xoy中,橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).已知點(1,e)和(e,
3
2
)
都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P,若AF1-BF2=
6
2
,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:天津市十二區(qū)縣重點學校2012屆高三畢業(yè)班聯(lián)考(二)數(shù)學理科試題 題型:044

已知橢圓方程為,其下焦點F1與拋物線x2=-4y的焦點重合,過F1的直線l與橢圓交于A、B兩點,與拋物線交于C、D兩點.當直線l與y軸垂直時,

(Ⅰ)求橢圓的方程;

(Ⅱ)求過點O、F1(其中O為坐標原點),且與直線(其中c為橢圓半焦距)相切的圓的方程;

(Ⅲ)求時直線l的方程,并求當斜率大于0時的直線l被(II)中的圓(圓心在第四象限)所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年甘肅省張掖中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

A組:直角坐標系xoy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.
B組:如圖,在平面直角坐標系xoy中,橢圓的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).已知點(1,e)和都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P,若,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年甘肅省張掖中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

A組:直角坐標系xoy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.
B組:如圖,在平面直角坐標系xoy中,橢圓的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).已知點(1,e)和都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P,若,求直線AF1的斜率.

查看答案和解析>>

同步練習冊答案