【題目】在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求直線l被曲線C截得的弦長(zhǎng).

【答案】
(1)解:∵直線l的參數(shù)方程為 (t為參數(shù)),

∴消去參數(shù)t得直線l的普通方程為y=3x﹣6,

∵曲線C的極坐標(biāo)方程為 ,

∴ρtanθsinθ=8,即ρsin2θ=8cosθ,

∴ρ2sin2θ=8ρcosθ,

∴曲線C的直角坐標(biāo)方程為y2=8x


(2)解:∵拋物線y2=8x的焦點(diǎn)是F(2,0),且直線l過(guò)拋物線的焦點(diǎn)F,

設(shè)直線l與曲線C交于點(diǎn)A(x1,y1),B(x2,y2),

,得9x2﹣44x+36=0,

,

∴|AB|=

∴直線l被曲線C截得的弦長(zhǎng)為


【解析】(1)直線l的參數(shù)方程消去參數(shù)t,能求出直線l的普通方程;曲線C的極坐標(biāo)方程轉(zhuǎn)化為ρ2sin2θ=8ρcosθ,由此能求出曲線C的直角坐標(biāo)方程.(2)拋物線y2=8x的焦點(diǎn)是F(2,0),且直線l過(guò)拋物線的焦點(diǎn)F,由 ,得9x2﹣44x+36=0,利用韋達(dá)定理和焦點(diǎn)弦公式能求出直線l被曲線C截得的弦長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門(mén)對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門(mén)的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)估計(jì)該企業(yè)的職工對(duì)該部門(mén)評(píng)分不低于80的概率;
(Ⅲ)從評(píng)分在[40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評(píng)分都在[40,50)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= +b(a,b∈R)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x﹣1.
(1)求實(shí)數(shù)a,b的值及函數(shù)f(x)的單調(diào)區(qū)間.
(2)當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),比較x1+x2與2e(e為自然對(duì)數(shù)的底數(shù))的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2|x+a|+|x﹣ |(a≠0).
(1)當(dāng)a=1時(shí),解不等式f(x)<4;
(2)求函數(shù)g(x)=f(x)+f(﹣x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且tanA,tanB是關(guān)于x的方程x2+(1+p)x+p+2=0的兩個(gè)根,c=4.
(1)求角C的大小;
(2)求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率

(1)求橢圓的標(biāo)準(zhǔn)方程

(2)是否存在過(guò)點(diǎn)的直線交橢圓與不同的兩點(diǎn),且滿足 (其中為坐標(biāo)原點(diǎn))。若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,是邊長(zhǎng)為4的正三角形, ,分別為的中點(diǎn),且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣1﹣ ,a∈R.
(1)若函數(shù)g(x)=(x﹣1)f(x)在(0,1)上有且只有一個(gè)極值點(diǎn),求a的范圍;
(2)當(dāng)a≤﹣1時(shí),證明:f(x)lnx>0對(duì)于任意x∈(0,1)∪(1,+∞)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=alog2(|x|+4)+x2+a2﹣8有唯一的零點(diǎn),則實(shí)數(shù)a的值是(
A.﹣4
B.2
C.±2
D.﹣4或2

查看答案和解析>>

同步練習(xí)冊(cè)答案