ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,則ω的取值范圍是   
【答案】分析:由Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},推出Sω的范圍,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,
推出π<1且2×π≥1,求得ω的范圍.
解答:解:Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)}⇒Sω={θ=π,k∈Z}={-π,-π,π,π}
因為對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,
且有a使Sω∩(a,a+1)含2個元素,也就是說Sω中任意相鄰的兩個元素之間隔必小于1,
并且Sω中任意相鄰的三個元素的兩間隔之和必大于等于1,
π<1且2×π≥1;
解可得π<ω≤2π.
故答案為:(π,2π]
點評:本題考查余弦函數(shù)的奇偶性,集合的包含關(guān)系判斷及應用,考查計算推理能力,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,則ω的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=sin[ω(x+θ)]是偶函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,則ω的取值范圍是
(π,2π]
(π,2π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過4個,則ω的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含有2個元素,則ω的取值范圍是__________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含有2個元素,則ω的取值范圍是_________.

查看答案和解析>>

同步練習冊答案