一條線段的兩個端點分別在一個直二面角的兩個面內(nèi)(都不在棱上),則這條線段與這兩個平面所成的角的和

[  ]

A.等于90°

B.大于90°

C.不大于90°

D.不小于90°

答案:C
解析:

  如下圖,設(shè)直二面角α-l-β,作AClC,BDlD.∵α⊥β,則AC⊥β,BD⊥α,連結(jié)BCAD,則∠ABCAB與平面β所成的角,∠BADAB與平面α所成的角.

  當(dāng)ABl時,易得AB與α、β所成角之和等于90°,當(dāng)ABl不垂直時,設(shè),,,,∵BCBD,∴,∵函數(shù)y=sinx上是增函數(shù),∴,∵,∴,∴.故AB與α、β所成角之和≤90°.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知正方體ABCD-A1B1C1D1的棱長為2,E、F、G分別是AB,BC,B1C1的中點,則下列說法正確的是
①②③⑤
①②③⑤
 (寫出所有正確命題的編號).
①P在直線EF上運動時,GP始終與平面AA1C1C平行;
②點Q在直線BC1上運動時,三棱錐A-D1QC的體積不變;
③點M是平面A1B1C1D1上到點?和.距離相等的點,則點M的軌跡是一條直線;
④以正方體ABCD-A1B1C1D1的任意兩個頂點為端點連一條線段,其中與棱AA1異面的有10條;
⑤點P是平面ABCD內(nèi)的動點,且點P到直線A1D1的距離與點P到點E的距離的平方差為3,則點P的軌跡為拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•合肥模擬)已知正方體ABCD-A1B1C1D1的棱長為2,E、F、G分別是AB、BC、B1C1的中點.下列說法正確的是
①②③
①②③
 (寫出所有正確命題的編號).
①P在直線EF上運動時,GP始終與平面AA1C1C平行;
②點Q在直線BC1上運動時,三棱錐A-D1QC的體積不變;
③點M是平面A1B1C1D1上到點D和C1距離相等的點,則點M的軌跡是一條的直線;
④以正方體ABCD-A1B1C1D1的任意兩個頂點為端點連一條線段,其中與棱AA1異面的有10條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年高中會考數(shù)學(xué)必備一本全2002年1月第1版 題型:044

一條線段AB(|AB|=3a)的兩個端點A和B分別在x軸和y軸上滑動,AB上有內(nèi)分點P,使得AP∶PB=1∶2,求P點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省皖南八校高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知正方體ABCD-A1B1C1D1的棱長為2,E、F、G分別是AB,BC,B1C1的中點,則下列說法正確的是     (寫出所有正確命題的編號).
①P在直線EF上運動時,GP始終與平面AA1C1C平行;
②點Q在直線BC1上運動時,三棱錐A-D1QC的體積不變;
③點M是平面A1B1C1D1上到點。亢停嚯x相等的點,則點M的軌跡是一條直線;
④以正方體ABCD-A1B1C1D1的任意兩個頂點為端點連一條線段,其中與棱AA1異面的有10條;
⑤點P是平面ABCD內(nèi)的動點,且點P到直線A1D1的距離與點P到點E的距離的平方差為3,則點P的軌跡為拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省合肥市高校附中高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知正方體ABCD-A1B1C1D1的棱長為2,E、F、G分別是AB、BC、B1C1的中點.下列說法正確的是     (寫出所有正確命題的編號).
①P在直線EF上運動時,GP始終與平面AA1C1C平行;
②點Q在直線BC1上運動時,三棱錐A-D1QC的體積不變;
③點M是平面A1B1C1D1上到點D和C1距離相等的點,則點M的軌跡是一條的直線;
④以正方體ABCD-A1B1C1D1的任意兩個頂點為端點連一條線段,其中與棱AA1異面的有10條.

查看答案和解析>>

同步練習(xí)冊答案