【題目】已知曲線f(x)=ke2x在點(diǎn)x=0處的切線與直線x﹣y﹣1=0垂直,若x1 , x2是函數(shù)g(x)=f(x)﹣|1nx|的兩個(gè)零點(diǎn),則( )
A.1<x1x2
B.<x1x2<1
C.2<x1x2<2
D.<x1x2<2

【答案】B
【解析】解:f(x)=ke2x在的導(dǎo)數(shù)為f′(x)=﹣2ke2x
在點(diǎn)x=0處的切線斜率為k=﹣2k,
由切線與直線x﹣y﹣1=0垂直,可得﹣2k=﹣1,
解得k= ,則f(x)= e2x ,
令g(x)=0,則|lnx|= e2x ,
作出y=|lnx|和y= e2x的圖象,
可知恰有兩個(gè)交點(diǎn),
設(shè)零點(diǎn)為x1 , x2且|lnx1|>|lnx2|,0<x1<1,x2>1,
故有 >x2 , 即x1x2<1.
又g( )= <0,
g(1)>0,
<x1<1,
∴x1x2
即有 <x1x2<1.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線x2=4y的焦點(diǎn)F和點(diǎn)A(-1,8),點(diǎn)P為拋物線上一點(diǎn),則|PA|+|PF|的最小值為(   )

A. 16 B. 6 C. 12 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 在x=1處取得極值.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[1,+∞)時(shí),f(x)≥ 恒成立,求實(shí)數(shù)m的取值范圍;
(3)當(dāng)n∈N* , n≥2時(shí),求證:nf(n)<2+ + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù).

(Ⅰ)求的值;

(Ⅱ)判斷在定義域上的單調(diào)性并加以證明;

(Ⅲ)若對(duì)于任意的,不等式恒成立, 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一錐體的三視圖如圖所示,則該棱錐的最長(zhǎng)棱的棱長(zhǎng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】半徑為2的球O內(nèi)有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時(shí),球的表面積與該四棱柱的側(cè)面積之差是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和最小值;

(2)若函數(shù)上的最小值為,求的值;

(3)若,且對(duì)任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為元.旅行團(tuán)中的每個(gè)人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)的人數(shù)不超過(guò)人時(shí),飛機(jī)票每張收費(fèi)元;若旅行團(tuán)的人數(shù)多于人時(shí),則予以優(yōu)惠,每多人,每個(gè)人的機(jī)票費(fèi)減少元,但旅行團(tuán)的人數(shù)最多不超過(guò)人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價(jià)格元,旅行社的利潤(rùn)為元.

(1)寫出飛機(jī)票價(jià)格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;

(2)當(dāng)旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的漸近線方程為,左焦點(diǎn)為F,過(guò)的直線為,原點(diǎn)到直線的距離是

(1)求雙曲線的方程;

(2)已知直線交雙曲線于不同的兩點(diǎn)C,D,問(wèn)是否存在實(shí)數(shù),使得以CD為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案