7.如圖,長方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1點E,F(xiàn),G分別是DD1,AB,CC1的中點,則異面直線A1E與GF所成的角是(  )
A.90°B.60°C.45°D.30°

分析 異面直線所成的角通過平移相交,找到平面角,轉(zhuǎn)化為平面三角形的角求解,由題意:E,F(xiàn),G分別是DD1,AB,CC1的中點,連接B1G,F(xiàn)B1,那么∠FGB1就是異面直線A1E與GF所成的角.

解答 解:由題意:ABCD-A1B1C1D1是長方體,E,F(xiàn),G分別是DD1,AB,CC1的中點,連接B1G,
∵A1E∥B1G,
∴∠FGB1為異面直線A1E與GF所成的角.
連接FB1,
在三角形FB1G中,AA1=AB=2,AD=1,
B1F=$\sqrt{(\frac{1}{2}AB)^{2}+A{{A}_{1}}^{2}}$=$\sqrt{5}$
B1G=$\sqrt{(\frac{1}{2}A{A}_{1})^{2}+A{D}^{2}}$=$\sqrt{2}$,
FG=$\sqrt{C{F}^{2}+(\frac{1}{2}A{A}_{1})^{2}}$=$\sqrt{3}$,
B1F2=B1G2+FG2
∴∠FGB1=90°,
即異面直線A1E與GF所成的角為90°.
故選A.

點評 本題考查兩條異面直線所成角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.方程log3x+logx3=2的解是x=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知命題p:“a>1”,命題q:“函數(shù)f(x)=ax-sinx在R上是增函數(shù)”,則命題p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)=$\left\{\begin{array}{l}{(5-a)x-4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),則實數(shù)a的取值范圍是(1,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=||x-1|-1|,關(guān)于x的方程f(x)=t恰有4個不等實根的個數(shù),且x1<x2<x3<x4,則x1+x2+x3x4的范圍是(3,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=ax2+x-a,a∈R
(1)若a=1,解不等式f(x)≥1;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}(6-a)x-4a\\{log_a}x\end{array}\right.\begin{array}{l}(x<1)\\(x≥1)\end{array}$滿足[f(x1)-f(x2)](x1-x2)>0對任意定義域中的x1,x2成立,則實數(shù)a的取值范圍是$[\frac{6}{5},6)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.將函數(shù)f(x)=sin(x+$\frac{5π}{6}$)圖象上各點的橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),再把得到的圖象向右平移$\frac{π}{3}$個單位,得到的新圖象的函數(shù)解析式為g(x)=sin(2x+$\frac{π}{6}$),g(x)的單調(diào)遞減區(qū)間是(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=(x+k)ex(k∈R).
(1)求f(x)的極值;
(2)求f(x)在x∈[0,3]上的最小值.
(3)設g(x)=f(x)+f'(x),若對?k∈[-$\frac{7}{2}$,-$\frac{3}{2}}$]及?x∈[0,2]有g(shù)(x)≥λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案