已知函數(shù)f(x)=x3+2x-sinx(x∈R).
(Ⅰ)證明:函數(shù)f(x)是R上單調遞增函數(shù);
(Ⅱ)解關于x的不等式f(x2-a)+f(x-ax)<0.
分析:(I)根據(jù)已知函數(shù)的解析式,求出函數(shù)的導函數(shù),根據(jù)二次函數(shù)和余弦函數(shù)的性質,分析導函數(shù)的符號,即可判斷出函數(shù)的單調性;
(II)根據(jù)函數(shù)奇偶性的定義及函數(shù)解析式,可判斷出函數(shù)為奇函數(shù),結合(I)中函數(shù)的單調性和定義域,可將不等式f(x2-a)+f(x-ax)<0化為(x+1)(x-a)<0,分別討論對應方程兩根a與-1的大小,即可得到不同情況下原不等式的解集.
解答:證明:(I)∵f(x)=x3+2x-sinx
∴f′(x)=3x2+2-cosx=3x2+(2-cosx)
∵3x2≥0,2-cosx>0恒成立,
故f′(x)>0,
故函數(shù)f(x)是R上單調遞增函數(shù);
(Ⅱ)∵f(-x)=(-x)3+2(-x)-sin(-x)=-(x3+2x-sinx)=-f(x)
函數(shù)f(x)是奇函數(shù)
原不等式可化為f(x2-a)<-f(x-ax)=f(ax-x)
由(1)可得x2-a<ax-x,即x2+(1-a)x-a<0,
即(x+1)(x-a)<0,
當a<-1時,原不等式的解析為(a,-1)
當a=-1時,原不等式的解析為∅
當a>-1時,原不等式的解析為(-1,a)
點評:本題考查的知識點是函數(shù)的單調性與奇偶性的證明及應用,熟練掌握導數(shù)法證明單調性及定義法證明奇偶性是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案