如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn).
(Ⅰ)求證:
(Ⅱ)設(shè)在線段AB上存在點(diǎn)M,使二面角D1―MC―D的大小為,求此時(shí)AM的長(zhǎng)及點(diǎn)E到平面D1MC的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在邊長(zhǎng)為12的正方形A1 AA′A1′中,點(diǎn)B、C在線段AA′上,且AB = 3,BC = 4,作BB1∥AA1,分別交A1A1′、AA1′于點(diǎn)B1、P;作CC1∥AA1,分別交A1A1′、AA1′于點(diǎn)C1、Q;將該正方形沿BB1、CC1折疊,使得A′A1′ 與AA1重合,構(gòu)成如圖所示的三棱柱ABC—A1B1C1,在三棱柱ABC—A1B1C1中, (Ⅰ)求證:AB⊥平面BCC1B1; (Ⅱ)求面PQA與面ABC所成的銳二面角的大小.(Ⅲ)求面APQ將三棱柱ABC—A1B1C1分成上、下兩部分幾何體的體積之比.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com