現(xiàn)有10件產(chǎn)品,其中有2件次品,任意抽出3件檢查.

(1)恰有一件是次品的抽法有多少種?

(2)至少一件是次品的抽法有多少種?

 

【答案】

(1)種            (2) 

【解析】(1)先選擇次品然后選擇正品,再利用分步原理求解即可;(2)先求出抽出3件正品的抽法數(shù),然后利用排除法求解

(1)恰有一件是次品,即從2件次品中抽1件,從8件正品中抽2件,所以,共有種     …6分

(2)至少有一件是次品,可用排除法,10件中抽取3件有種,8件正品中抽取3件有種,所以,共有

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠(chǎng)生產(chǎn)的產(chǎn)品在出廠(chǎng)前都要做質(zhì)量檢測(cè),每一件一等品都能通過(guò)檢測(cè),每一件二等品通過(guò)檢測(cè)的概率為
23
.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(Ⅰ) 隨機(jī)選取1件產(chǎn)品,求能夠通過(guò)檢測(cè)的概率;
(Ⅱ)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為X,求X的分布列;
(Ⅲ) 隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過(guò)檢測(cè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠(chǎng)生產(chǎn)的產(chǎn)品在出廠(chǎng)前都要做質(zhì)量檢測(cè),每一件一等品都能通過(guò)檢測(cè),每一件二等品通過(guò)檢測(cè)的概率為
23
.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(1)隨機(jī)選取1件產(chǎn)品,求能夠通過(guò)檢測(cè)的概率;
(2)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為X,求X的數(shù)學(xué)期望;
(3)隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過(guò)檢測(cè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

(本小題共13分)
某廠(chǎng)生產(chǎn)的產(chǎn)品在出廠(chǎng)前都要做質(zhì)量檢測(cè),每一件一等品都能通過(guò)檢測(cè),每一件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(Ⅰ) 隨機(jī)選取1件產(chǎn)品,求能夠通過(guò)檢測(cè)的概率;
(Ⅱ)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(Ⅲ)隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過(guò)檢測(cè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆吉林省高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分12分)某廠(chǎng)生產(chǎn)的產(chǎn)品在出廠(chǎng)前都要做質(zhì)量檢測(cè),每一件一等品都能通過(guò)

檢測(cè),每一件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等

品.

(Ⅰ) 隨機(jī)選取1件產(chǎn)品,求能夠通過(guò)檢測(cè)的概率;

(Ⅱ) 隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;

(Ⅲ) 隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過(guò)檢測(cè)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省高三第四次月考理科數(shù)學(xué)試卷 題型:解答題

某廠(chǎng)生產(chǎn)的產(chǎn)品在出廠(chǎng)前都要做質(zhì)量檢測(cè),每一件一等品都能通過(guò)檢測(cè),每一件二等品通過(guò)檢測(cè)的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.

(1) 隨機(jī)選取1件產(chǎn)品,求能夠通過(guò)檢測(cè)的概率;

(2)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的數(shù)學(xué)期望;

(3) 隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過(guò)檢測(cè)的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案