【題目】我市“金!惫珗@欲在長(zhǎng)、寬分別為 、的矩形地塊內(nèi)開鑿一“撻圓”形水池(如圖),池邊由兩個(gè)半橢圓和()組成,其中,“撻圓”內(nèi)切于矩形且其左右頂點(diǎn), 和上頂點(diǎn)構(gòu)成一個(gè)直角三角形.
(1)試求“撻圓”方程;
(2)若在“撻圓”形水池內(nèi)建一矩形網(wǎng)箱養(yǎng)殖觀賞魚,則該網(wǎng)箱水面面積最大為多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品 (百臺(tái)),其總成本為萬元,其中固定成本為42萬元,且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為15萬元總成本固定成本生產(chǎn)成本銷售收入萬元滿足,假定該產(chǎn)品產(chǎn)銷平衡即生產(chǎn)的產(chǎn)品都能賣掉,根據(jù)上述條件,完成下列問題:
寫出總利潤(rùn)函數(shù)的解析式利潤(rùn)銷售收入總成本;
要使工廠有盈利,求產(chǎn)量的范圍;
工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí), f(x)=-x+1
(1)求f(0),f(2);
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)<3,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長(zhǎng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有an= +2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長(zhǎng)、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點(diǎn)在曲線2x2+y2=1上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 其中是常數(shù)且,若的最小值是,滿足條件的點(diǎn)是橢圓一弦的中點(diǎn),則此弦所在的直線方程為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com