已知lg2=m,lg3=n,則lg18=   
【答案】分析:由對(duì)數(shù)的運(yùn)算法則知lg18=lg2+2lg3.
解答:解:∵lg2=m,lg3=n,
∴l(xiāng)g18=lg2+2lg3
=m+2n.
故答案為:m+2n.
點(diǎn)評(píng):本題考查對(duì)數(shù)的運(yùn)算法則,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lg(x2-mx+2m-1),m∈R
(Ⅰ)當(dāng)m=0時(shí),求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)的值域是[lg2,+∞),求m的值;
(Ⅲ)若x∈[0,1]時(shí)不等式f(x)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)=lg(x2-mx+2m-1),m∈R
(Ⅰ)當(dāng)m=0時(shí),求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)的值域是[lg2,+∞),求m的值;
(Ⅲ)若x∈[0,1]時(shí)不等式f(x)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省深圳市第二高級(jí)中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知f(x)=lg(x2-mx+2m-1),m∈R
(Ⅰ)當(dāng)m=0時(shí),求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)的值域是[lg2,+∞),求m的值;
(Ⅲ)若x∈[0,1]時(shí)不等式f(x)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案