若圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且與直線相切, 從圓外一點(diǎn)向該圓引切線,為切點(diǎn),

(Ⅰ)求圓的方程;

(Ⅱ)已知點(diǎn),且, 試判斷點(diǎn)是否總在某一定直線上,若是,求出的方程;若不是,請(qǐng)說明理由;

(Ⅲ)若(Ⅱ)中直線軸的交點(diǎn)為,點(diǎn)是直線上兩動(dòng)點(diǎn),且以為直徑的圓過點(diǎn),圓是否過定點(diǎn)?證明你的結(jié)論.

 

【答案】

(1)

(2)

(3)圓過定點(diǎn)

【解析】

試題分析:解(Ⅰ)設(shè)圓心由題易得  1分   半徑,  2分

,  3分    所以圓的方程為  4分

(Ⅱ)由題可得  5分  所以  -6分

  7分

所以   整理得

所以點(diǎn)總在直線上  8分

(Ⅲ)  9分  由題可設(shè)點(diǎn),

則圓心,半徑  10分

從而圓的方程為  11分

整理得   又點(diǎn)在圓上,故

  12分   所以

,  13分  所以

所以圓過定點(diǎn)  14分

考點(diǎn):圓的方程

點(diǎn)評(píng):主要是考查了圓的方程以及直線方程的求解,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江西)若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(4,0),且與直線y=1相切,則圓C的方程是
(x-2)2+(y+
3
2
)2=
25
4
(x-2)2+(y+
3
2
)2=
25
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(4,0),且與直線y=2相切,則圓C的方程是
(x-2)2+y2=4
(x-2)2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(6,0),且與直線y=1相切,從圓C外一點(diǎn)P(a,b)向該圓引切線PT,T為切點(diǎn),
(Ⅰ)求圓C的方程;
(Ⅱ)已知點(diǎn)Q(2,-2),且|PT|=|PQ|,試判斷點(diǎn)P是否總在某一定直線l上,若是,求出l的方程;若不是,請(qǐng)說明理由;
(Ⅲ)若(Ⅱ)中直線l與x軸的交點(diǎn)為F,點(diǎn)M,N是直線x=6上兩動(dòng)點(diǎn),且以M,N為直徑的圓E過點(diǎn)F,圓E是否過定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(4,0),且與直線y=1相切,則圓C的方程是         。

查看答案和解析>>

同步練習(xí)冊(cè)答案