已知函數(shù)f(x)=(x3+ax)ex,x∈R.
(I)若a=0,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(II)若f(x)在區(qū)間(0,1)上單調(diào)遞減,求a的取值范圍.
【答案】分析:(Ⅰ)利用導(dǎo)數(shù)即可得出其單調(diào)區(qū)間;
(Ⅱ)利用導(dǎo)數(shù)可知f(x)≤0(x∈(0,1)),通過分離參數(shù),再轉(zhuǎn)化為利用導(dǎo)數(shù)求一個函數(shù)的最值問題即可.
解答:解:(I)當(dāng)a=0時,f(x)=x3ex
∴f'(x)=3x2ex+x3ex=x2(3+x)ex,
令f(x)=0,解得x=0,或-3.
①當(dāng)x>-3時,則f'(x)≥0,函數(shù)f(x)單調(diào)遞增;
②當(dāng)x<-3時,則f'(x)<0,函數(shù)f(x)單調(diào)遞減.
∴函數(shù)f(x)=x3ex在(-∞,-3)為減函數(shù),在(-3,+∞)為增函數(shù).
(II)∵f'(x)=(3x2+a)ex+(x3+ax)ex=(x3+3x2+ax+a)ex
由已知得(x3+3x2+ax+a)ex≤0在(0,1)上恒成立,
在(0,1)上恒成立.

=-
∵x∈(0,1),∴g(x)<0.
∴函數(shù)g(x)在區(qū)間(0,1)上是減函數(shù).
∴a≤g(1)=-2.
故a≤-2.
點評:熟練掌握利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性及使用分離參數(shù)法求參數(shù)的取值范圍是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案