已知0<a<1,復(fù)數(shù)z滿足z(1+i)=a+2i,則|z|的取值范圍是( 。
A、(
2
10
2
)
B、(4,5)
C、(
1
2
5
2
)
D、(
2
5
)
考點(diǎn):復(fù)數(shù)求模,復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式、二次函數(shù)的單調(diào)性即可得出.
解答: 解:∵z(1+i)=a+2i,∴z=
a+2i
1+i
=
(a+2i)(1-i)
(1+i)(1-i)
=
a+2+(2-a)i
2
=
a+2
2
+
2-a
2
i

則|z|=
(
a+2
2
)2+(
2-a
2
)2
=
2a2+8
2
,
∵0<a<1,∴8<2a2+8<10,
∴|z|∈(
2
,
10
2
)

故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式、二次函數(shù)的單調(diào)性即可得出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?∈R,x2≥0”的否定是( 。
A、?x∉R,x2≥0
B、?x∉R,x2<0
C、?x∈R,x2≥0
D、?x∈R,x2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a3=7,a7=3,則a10等于(  )
A、0B、1C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
|x|ax
x
(a>1)的圖象大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x2-2x-3>0},N={x|-1≤x≤1},則M∩(∁RN)=( 。
A、(-∞,-3)∪(1,3)
B、(-∞,-1)∪(1,+∞)
C、(-∞,-1)∪(3,+∞)
D、(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-1,0,1},B={x|x2-x<2},則集合A∩B=(  )
A、{-1,0,1}
B、{-1,0}
C、{0,1}
D、{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意θ,sin3θ=msinθsin(θ+
π
3
)sin(θ+
3
)恒成立,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1,邊長(zhǎng)為1,E為CC1上一點(diǎn),且EC=
2
2

(1)證明:B1D1∥平面BDE;
(2)求二面角E-BD-C大。
(3)證明:平面ACC1A1⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等比數(shù)列,a1=1,a4=8,在an和an+1之間插入bn個(gè)數(shù)得到一個(gè)新數(shù)列{cn},已知b1=1,{cn}為等差數(shù)列
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案