已知a,b,c均為正數(shù),證明:并確定a、b、
c為何值時(shí),等號(hào)成立.
利用重要不等式a2+b2≥2ab來分析并證明,先展開,然后借助于不等式來得到。
【解析】
試題分析:、證明 因?yàn)閍,b,c均為正數(shù),由均值不等式得
a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,
所以a2+b2+c2≥ab+bc+ac,①
同理,②
故.③
所以原不等式成立.
當(dāng)且僅當(dāng)a=b=c時(shí),①式和②式等號(hào)成立;
當(dāng)且僅當(dāng)a=b=c,(ab)2=(bc)2=(ac)2=3時(shí),③式等號(hào)成立.
即當(dāng)且僅當(dāng)a=b=c=時(shí),原式等號(hào)成立.
考點(diǎn):重要不等式
點(diǎn)評(píng):主要是考查了運(yùn)用重要不等式進(jìn)行放縮來證明不等式的方法,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
5 |
c |
a |
a |
c |
Xn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
9 |
|
|
π |
3 |
4a+1 |
4b+1 |
4c+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月月考理科數(shù)學(xué)試卷 題型:填空題
已知a,b,c均為正實(shí)數(shù),記,則M的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com