【題目】如圖,點(diǎn)P在△ABC內(nèi),AB=CP=2,BC=3,∠P+∠B=π,記∠B=α.
(1)試用α表示AP的長(zhǎng);
(2)求四邊形ABCP的面積的最大值,并寫(xiě)出此時(shí)α的值.
【答案】
(1)解:△ABC與△APC中,AB=CP=2,BC=3,∠B=α,∠P=π﹣α,
由余弦定理得,AC2=22+32﹣2×2×3cosα,①
AC2=AP2+22﹣2×AP×2cos(π﹣α),②
由①②得:AP2+4APcosα+12cosα﹣9=0,α∈(0,π),
解得:AP=3﹣4cosα
(2)解:∵AP=3﹣4cosα,α∈(0,π),
∴S四邊形ABCP=S△ABC﹣S△APC
= ×2×3sinα﹣ ×2×APsin(π﹣α)
=3sinα﹣(3﹣4cosα)sinα
=4sinαcosα=2sin2α,α∈(0,π),
則當(dāng)α= 時(shí),Smax=2
【解析】(1)在三角形ABC中,由AB,BC及cosB,利用余弦定理列出關(guān)系式,記作①;在三角形APC中,由AP,PC及cosP,利用余弦定理列出關(guān)系式,記作②,由①②消去AC,得到關(guān)于AP的方程,整理后可用α表示AP的長(zhǎng);(2)由三角形的面積公式表示出三角形ABC及三角形APC的面積,兩三角形面積之差即為四邊形ABCP的面積,整理后將表示出的AP代入,根據(jù)正弦函數(shù)的圖象與性質(zhì)即可求出四邊形ABCP的面積的最大值,以及此時(shí)α的值.
【考點(diǎn)精析】掌握余弦定理的定義是解答本題的根本,需要知道余弦定理:;;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四種說(shuō)法:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y= + 與y= 都是奇函數(shù);
④函數(shù)y=(x﹣1)2與y=2x﹣1在區(qū)間[0,+∞)上都是增函數(shù).
其中正確的序號(hào)是(把你認(rèn)為正確敘述的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在[﹣4,4]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣4,0]時(shí),f(x)= + (a∈R).
(1)求f(x)在[0,4]上的解析式;
(2)若x∈[﹣2,﹣1]時(shí),不等式f(x)≤ ﹣ 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+ +lnx,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在區(qū)間(1,4)內(nèi)單調(diào)遞增,求a的取值范圍;
(3)討論函數(shù)g(x)=f′(x)﹣x的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距200千米,汽車(chē)從甲地勻速行駛到乙地,速度不得超過(guò)50千米/時(shí).已知汽車(chē)每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.02;固定部分為50(元/時(shí)).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出定義域;
(2)用單調(diào)性定義證明(1)中函數(shù)的單調(diào)性,并指出汽車(chē)應(yīng)以多大速度行駛可使全程運(yùn)輸成本最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)f(x)=lg (x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng);
②在區(qū)間(﹣∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)統(tǒng)計(jì),2016年“雙十”天貓總成交金額突破1207億元.某購(gòu)物網(wǎng)站為優(yōu)化營(yíng)銷(xiāo)策略,對(duì)11月11日當(dāng)天在該網(wǎng)站進(jìn)行網(wǎng)購(gòu)消費(fèi)且消費(fèi)金額不超過(guò)1000元的1000名網(wǎng)購(gòu)者(其中有女性800名,男性200名)進(jìn)行抽樣分析.采用根據(jù)性別分層抽樣的方法從這1000名網(wǎng)購(gòu)者中抽取100名進(jìn)行分析,得到下表:(消費(fèi)金額單位:元)
女性消費(fèi)情況:
消費(fèi)金額 | |||||
人數(shù) | 5 | 10 | 15 | 47 |
男性消費(fèi)情況:
消費(fèi)金額 | |||||
人數(shù) | 2 | 3 | 10 | 2 |
(1)計(jì)算,的值;在抽出的100名且消費(fèi)金額在(單位:元)的網(wǎng)購(gòu)者中隨機(jī)選出兩名發(fā)放網(wǎng)購(gòu)紅包,求選出的兩名網(wǎng)購(gòu)者恰好是一男一女的概率;
(2)若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)?”
女性 | 男性 | 總計(jì) | |
網(wǎng)購(gòu)達(dá)人 | |||
非網(wǎng)購(gòu)達(dá)人 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,
(2)當(dāng)時(shí),關(guān)于的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,
求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],滿足a﹣ex+1+x<0成立,求實(shí)數(shù)a的取值范圍.
(2)當(dāng)x≥0時(shí),f(x)≥(t﹣1)x恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com