已知在區(qū)間上是增函數(shù)

(I)求實數(shù)的取值范圍;

(II)記實數(shù)的取值范圍為集合A,且設(shè)關(guān)于的方程的兩個非零實根為

①求的最大值;

②試問:是否存在實數(shù)m,使得不等式恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

(I)的取值范圍為

(II)存在實數(shù)滿足題設(shè)條件


解析:

1.解:(1)    ……………………………………………1分

上是增函數(shù)

,在恒成立 …………①    …………3分

設(shè) ,則由①得

    解得

   所以,的取值范圍為………………………………………………………6分

(2)由(1)可知

       是方程的兩個非零實根

    ,又由

    ……………………………9分

于是要使恒成立

恒成立 ………②………11分

設(shè) ,則由②得

    解得

故存在實數(shù)滿足題設(shè)條件…………………………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在區(qū)間上是增函數(shù),則的范圍是(     )

A.          B.           C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省中山市一中高三上學(xué)期第二次統(tǒng)測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知在區(qū)間上是增函數(shù).

(1)求實數(shù)的值組成的集合

(2)設(shè)關(guān)于的方程的兩個非零實根為、.試問:是否存在實數(shù),使得不等式對任意 恒成立?若存在,求的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省寧波萬里國際學(xué)校高二下期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知在區(qū)間上是增函數(shù),則的取值范圍為(      ) 

A、   。隆

C、    D、不存在

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省09-10學(xué)年高二第二學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

已知在區(qū)間上是增函數(shù).

(1)求實數(shù)的值組成的集合;

(2)設(shè)關(guān)于的方程的兩個非零實根為,試問:是否存在實數(shù),使得不等式對任意恒成立?若存在,求的取值范圍;若不存在,請說明理

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶一中高一上學(xué)期10月月考數(shù)學(xué)卷 題型:選擇題

已知在區(qū)間上是增函數(shù),則實數(shù)的范圍是(     )

A.          B.           C.        D.

 

查看答案和解析>>

同步練習(xí)冊答案