正方體的棱線長(zhǎng)為1,面對(duì)角線上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則下列四個(gè)結(jié)論中① ②平面 ③三棱錐的體積為定值 ④異面直線所成的角為定值,其中正確的個(gè)數(shù)是

A.1                B.2                C.3                D.4

 

【答案】

C

【解析】

試題分析:①AC⊥BE,由題意及圖形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命題正確;

②EF∥平面ABCD,由正方體ABCD-A1B1C1D1的兩個(gè)底面平行,EF在其一面上,故EF與平面ABCD無公共點(diǎn),故有EF∥平面ABCD,此命題正確;

③三棱錐A-BEF的體積為定值,由幾何體的性質(zhì)及圖形知,三角形BEF的面積是定值,A點(diǎn)到面DD1B1B距離是定值,故可得三棱錐A-BEF的體積為定值,此命題正確;

④異面直線AE、BF所成的角為定值,由圖知,當(dāng)F與B1重合時(shí),令上底面頂點(diǎn)為O,則此時(shí)兩異面直線所成的角是∠A1AO,當(dāng)E與D1重合時(shí),此時(shí)點(diǎn)F與O重合,則兩異面直線所成的角是OBC1,此二角不相等,故異面直線AE、BF所成的角不為定值.

綜上知①②③正確,故選C。

考點(diǎn):本題主要考查正方體的幾何性質(zhì)。

點(diǎn)評(píng):中檔題,解答本題關(guān)鍵是正確理解正方體的幾何性質(zhì),且能根據(jù)這些幾何特征,對(duì)其中的點(diǎn)線面和位置關(guān)系作出正確判斷.另外,異面直線所成角的定義以及線面垂直的證明也是解答本題的關(guān)鍵。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體的棱線長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則下列結(jié)論中錯(cuò)誤的是(     )

A.

B.

C.三棱錐的體積為定值

D.異面直線所成的角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體的棱線長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E、F,且,則下列結(jié)論中錯(cuò)誤的是

A.

B.

C.三棱錐的體積為定值

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

正方體的棱線長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則三棱錐的體積為           

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三第四次月考數(shù)學(xué)文卷 題型:選擇題

如圖,正方體的棱線長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則下列結(jié)論中錯(cuò)誤的是          

(A)                     (B)

(C)三棱錐的體積為定值   (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省高二12月月考數(shù)學(xué)卷doc 題型:選擇題

(理) 如圖,正方體的棱線長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則下列結(jié)論中錯(cuò)誤的是 

(A)                   (B)

(C)三棱錐的體積為定值  (D)異面直線所成的角為定值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案