集合A={x||x-2|+|x|≤a},B=
(Ⅰ)若a=4,求A∩B;
(Ⅱ)若A⊆B,求a的取值范圍.
【答案】分析:(Ⅰ)a=4,||x-2|+|x|≤4,分x>2,x<2,x=2求出集合A,求出集合B,可求A∩B;
(Ⅱ)利用(1)若a<2,a=2,a>2,結(jié)合A⊆B,求a的取值范圍.
解答:解:(Ⅰ)若a=4,則|x-2|+|x|≤4,不等式可化為:,
解得A=[-1,3](3分)
,解得(5分)
A∩B=(6分)
(Ⅱ)由于|x-2|+|x|的最小值為2,且A⊆B,
①若a<2,則A=∅,A⊆B顯然成立;
②若a=2,則A=[0,2],A⊆B也成立;(9分)
③若a>2,則不等式可化為:,
解得A=
∵A⊆B,∴(舍去)
解得(13分)
綜上,(14分)
點評:本題考查絕對值不等式的解法,集合的包含關(guān)系判斷及應(yīng)用,交集及其運算,對數(shù)函數(shù)的單調(diào)性與特殊點,考查計算能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>1},B={x|x2-2x<0},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)1、已知全集∪=R,集合A={x|x2≤4},B={x|x<1},則集合A∪?UB等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•桂林二模)已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=( 。
A.{x|x>0或x<-3}B.{x|x>0或x<-1}C.{x|x>3或x<-1}D.{x|2<x<3}

查看答案和解析>>

同步練習(xí)冊答案