分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得tanα的值.
解答 解:∵α為銳角,滿足cosα+2sinα=$\frac{\sqrt{10}}{2}$,∴平方可得 cos2α+4sinαcosα+4sin2α=$\frac{5}{2}$,
即 $\frac{{cos}^{2}α+4sinαcosα+{4sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1+4tanα+{4tan}^{2}α}{{tan}^{2}α+1}$=$\frac{5}{2}$,求得tanα=-3 (舍去)或 tanα=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ③④ | B. | ②④ | C. | ①③ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com