如圖:在橢圓
x2
25
+
y2
16
=1中有一內(nèi)接矩形ABCD(四個頂點都在橢圓上),A點在第一象限內(nèi).當(dāng)內(nèi)接矩形ABCD的面積最大時,點A的坐標(biāo)是(  )
A.(
5
2
2
,2
2
B.(
5
2
,2)
C.(
2
2
,
2
D.(1,
8
6
5
精英家教網(wǎng)
∵A點在橢圓
x2
25
+
y2
16
=1上,∴可設(shè)A(5cosθ,4sinθ)
∴矩形ABCD的面積為4×(5cosθ)(4sinθ)=80cosθsinθ=40sin2θ
∵sin2θ≤1,且當(dāng)2θ=
π
2
時等號成立,
∴40sin2θ≤40,且當(dāng)2θ=
π
2
時等號成立,
∴當(dāng)2θ=
π
2
,即θ=
π
4
時,橢圓
x2
25
+
y2
16
=1的內(nèi)接矩形ABCD面積有最大值,此時A(
5
2
2
2
2

故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點P為橢圓
x2
25
+
y2
9
=1
在第一象限內(nèi)的任意一點,過橢圓的右頂點A和上頂點B分別作與y軸和x軸的平行線交于C,過P引BC、AC的平行線交AC于N,交BC于M,交AB于D、E,矩形PMCN的面積是S1,三角形PDE的面積是S2,則S1:S2=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A1,A為橢圓的兩個頂點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點.
(Ⅰ)寫出橢圓的方程;
(Ⅱ)過線段OA上異于O,A的任一點K作OA的垂線,交橢圓于P,P1兩點,直線A1P與AP1交于點M.求證:點M在雙曲線
x2
25
-
y2
9
=1
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:在橢圓
x2
25
+
y2
16
=1中有一內(nèi)接矩形ABCD(四個頂點都在橢圓上),A點在第一象限內(nèi).當(dāng)內(nèi)接矩形ABCD的面積最大時,點A的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)如圖,A1,A為橢圓的兩個頂點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點.
(Ⅰ)寫出橢圓的方程及準(zhǔn)線方程;
(Ⅱ)過線段OA上異于O,A的任一點K作OA的垂線,交橢圓于P,P1兩點,直線A1P與AP1交于點M.求證:點M在雙曲線
x2
25
-
y2
9
=1
上.

查看答案和解析>>

同步練習(xí)冊答案