(2009福建卷理)(本小題滿分14分)

已知函數(shù),且                                   

(1) 試用含的代數(shù)式表示b,并求的單調(diào)區(qū)間;

(2)令,設(shè)函數(shù)處取得極值,記點M (,),N(,),P(),  ,請仔細觀察曲線在點P處的切線與線段MP的位置變化趨勢,并解釋以下問題:

(I)若對任意的m (, x),線段MP與曲線f(x)均有異于M,P的公共點,試確定t的最小值,并證明你的結(jié)論;

(II)若存在點Q(n ,f(n)), x n< m,使得線段PQ與曲線f(x)有異于P、Q的公共點,請直接寫出m的取值范圍(不必給出求解過程)           

解析:解法一:

(Ⅰ)依題意,得

.

從而

①當a>1時,

當x變化時,的變化情況如下表:

x

+

+

單調(diào)遞增

單調(diào)遞減

單調(diào)遞增

由此得,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為。

②當時,此時有恒成立,且僅在,故函數(shù)的單調(diào)增區(qū)間為R

③當時,同理可得,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

綜上:

時,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

時,函數(shù)的單調(diào)增區(qū)間為R;

時,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由

由(1)得增區(qū)間為,單調(diào)減區(qū)間為,所以函數(shù)在處取得極值,故M()N()。

觀察的圖象,有如下現(xiàn)象:

①當m從-1(不含-1)變化到3時,線段MP的斜率與曲線在點P處切線的斜率之差Kmp-的值由正連續(xù)變?yōu)樨摗?/p>

②線段MP與曲線是否有異于H,P的公共點與Kmp的m正負有著密切的關(guān)聯(lián);

③Kmp-=0對應的位置可能是臨界點,故推測:滿足Kmp的m就是所求的t最小值,下面給出證明并確定的t最小值.曲線在點處的切線斜率;

線段MP的斜率Kmp

當Kmp-=0時,解得

直線MP的方程為

時,上只有一個零點,可判斷函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又,所以上沒有零點,即線段MP與曲線沒有異于M,P的公共點。

時,.

所以存在使得

即當MP與曲線有異于M,P的公共點

綜上,t的最小值為2.

(2)類似(1)于中的觀察,可得m的取值范圍為

解法二:

(1)同解法一.

(2)由,令,得

由(1)得的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,所以函數(shù)在處取得極值。故M().N()

 (Ⅰ) 直線MP的方程為

線段MP與曲線有異于M,P的公共點等價于上述方程在(-1,m)上有根,即函數(shù)

上有零點.

因為函數(shù)為三次函數(shù),所以至多有三個零點,兩個極值點.

.因此, 上有零點等價于內(nèi)恰有一個極大值點和一個極小值點,即內(nèi)有兩不相等的實數(shù)根.

等價于         即

又因為,所以m 的取值范圍為(2,3)

從而滿足題設(shè)條件的r的最小值為2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009福建卷理)已知全集U=R,集合,則等于

A.  { x 0x2}                       B { x 0<x<2} 

C.  { x x<0或x>2}                     D { x x0或x2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009福建卷理)等差數(shù)列的前n項和為,且 =6,=4, 則公差d等于

A.1          B               C.- 2                D 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009福建卷理)等于

A.        B. 2              C. -2            D. +2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009福建卷理)某校開展“愛我海西、愛我家鄉(xiāng)”攝影比賽,9位評委為參賽作品A給出的分數(shù)如莖葉圖所示。記分員在去掉一個最高分和一個最低分后,算的平均分為91,復核員在復核時,發(fā)現(xiàn)有一個數(shù)字(莖葉圖中的x)無法看清。若記分員計算失誤,則數(shù)字應該是___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009福建卷理)過拋物線的焦點F作傾斜角為的直線交拋物線于A、B兩點,若線段AB的長為8,則________________

查看答案和解析>>

同步練習冊答案