平面上有三個點A(-2,y),B(0,),C(x,y),若⊥,則動點C的軌跡方程是_________.
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十八第八章第九節(jié)練習卷(解析版) 題型:選擇題
斜率為1的直線l與橢圓+y2=1交于不同兩點A,B,則|AB|的最大值為( )
(A)2 (B)
(C) (D)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:填空題
設連接雙曲線-=1與-=1(a>0,b>0)的4個頂點的四邊形面積為S1,連接其4個焦點的四邊形面積為S2,則的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題
已知點P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點,直線m是以P為中點的弦所在的直線,直線l的方程為ax+by=r2,那么( )
(A)m∥l,且l與圓相交 (B)m⊥l,且l與圓相切
(C)m∥l,且l與圓相離 (D)m⊥l,且l與圓相離
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十七第八章第八節(jié)練習卷(解析版) 題型:解答題
已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設L上的點與點M(x,y)的距離的最小值為m,點F(0,1)與點M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點B(x1,y1),使得過點B的切線與兩坐標軸圍成的三角形的面積等于.若存在,請求出點B的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十七第八章第八節(jié)練習卷(解析版) 題型:選擇題
已知點F(,0),直線l:x=-,點B是l上的動點,若過B垂直于y軸的直線與線段BF的垂直平分線交于點M,則點M的軌跡是( )
(A)雙曲線 (B)橢圓
(C)圓 (D)拋物線
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十一第八章第二節(jié)練習卷(解析版) 題型:填空題
已知定點A(1,1),B(3,3),動點P在x軸上,則|PA|+|PB|的最小值是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:填空題
設函數(shù)y=sin(ωx+φ)(ω>0,φ∈(-,))的最小正周期為π,且其圖象關于直線x=對稱,則在下面四個結論中:
①圖象關于點(,0)對稱;
②圖象關于點(,0)對稱;
③在[0,]上是增函數(shù);
④在[-,0]上是增函數(shù).
正確結論的編號為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十八第四章第四節(jié)練習卷(解析版) 題型:填空題
如圖,已知=a,=b,任意點M關于點A的對稱點為S,點S關于點B的對稱點為N.設|a|=1,|b|=2,a與b的夾角為30°,若⊥(λa+b),則實數(shù)λ= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com