如圖,某市擬在長為8km的道路OP的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0),x∈[0,4]的圖象,且圖象的最高點為S(3,2
3
);賽道的后一部分為折線段MNP.試求A、ω的值和M、P兩點間的距離.
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由圖象易知A=2
3
,又
T
4
=
=3,可求得ω=
π
6
,于是可得函數(shù)的解析式,繼而可得M、P兩點的坐標及M、P兩點之間的距離.
解答: 解:由圖知,A=2
3
,又
T
4
=
=3,
解得:ω=
π
6
;
所以,y=2
3
sin
π
6
x;
當x=4時,y=2
3
sin
3
=3,
所以,M(4,3),又P(8,0),
所以|MP|=
(8-4)2+32
=5.
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查兩點間的距離公式,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)A是圓(x+1)2+y2=9上的動點,PA是圓的切線,且|PA|=4,則點P到點Q(5,8)距離的最小值為( 。
A、5B、4C、6D、15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A、B是函數(shù)y=log2x圖象上兩點,其橫坐標分別為a和a+4,直線l:x=a+2與函數(shù)y=log2x圖象交于點C,與直線AB交于點D.
(1)求點D的坐標;
(2)當△ABC的面積等于1時,求實數(shù)a的值.
(3)當1≤a≤2時,求△ABC的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
3
ax3+(a-1)bx2-2x+1,a∈R.
(1)當b=1時,討論函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a=2且函數(shù)y=f(x)在(1,2)上存在增區(qū)間,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0),若曲線y=f(x)的斜率最小的切線與直線12x+y=6平行,求:
(1)a的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間;
(3)函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知圓O:x2+y2=1與x軸交于A、B兩點,與y軸的正半軸交于點C,M是圓O上任意點(除去圓O與兩坐標軸的交點).直線AM與直線BC交于點P,直線CM與x軸交于點N,設(shè)直線PM、PN的斜率分別為m、n.
(Ⅰ)求直線BC的方程;
(Ⅱ)求點P、M的坐標(用m表示);
(Ⅲ)是否存在一個實數(shù)λ,使得m+λn為定值,若存在求出λ,并求出這個定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓半徑r=3,圓心在二次函數(shù)y=-(x+2)2的圖象上,直線y=x+2被這個圓截得的弦長為2
7
,求這個圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,函數(shù)f(x)=
x
(x-a).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F(xiàn)分別為邊AD和BC上的點,且EF∥AB,AD=2AE=2AB=4FC=4.將四邊形EFCD沿EF折起成如圖2的位置,使平面EFCD和平面ABEF所成二面角的大小為60°,
(Ⅰ)求證:直線BC⊥平面CDEF;
(Ⅱ)求二面角C-BD-A的大小:

查看答案和解析>>

同步練習冊答案