【題目】為響應(yīng)“文化強(qiáng)國建設(shè)”號召,并增加學(xué)生們對古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計劃建設(shè)一個古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計調(diào)查.統(tǒng)計顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44.

(1)能否在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?

(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書籍,語文教研組計劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會.經(jīng)過綜合考慮與對比,語文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

【答案】(1)能;(2)分布列見解析,.

【解析】

(1)根據(jù)題意,可得列聯(lián)表.并由公式求得的觀測值.結(jié)合所給的參考數(shù)據(jù)即可判斷.

(2)設(shè)5人中男生有表人,女生人,則.根據(jù)題意可知分別求得各概率值即可得分布列.由期望公式即可求得數(shù)學(xué)期望值.

(1)根據(jù)所給條件,制作列聯(lián)表如下:

男生

女生

總計

喜歡閱讀古典文學(xué)

64

36

100

不喜歡閱讀古典文學(xué)

56

44

100

總計

120

80

200

所以的觀測值,

因為的觀測值,

由所給臨界值表可知,能夠在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān);

(2)設(shè)參加交流會的5人中喜歡古典文學(xué)的男生代表人,女生代表人,則,根據(jù)已知條件可得

;

;

;

,

所以的分布列是:

1

2

3

4

5

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點在線段上運動,則下列判斷中正確的是( )

①平面平面;

平面;

③異面直線所成角的取值范圍是;

④三棱錐的體積不變.

A. ①② B. ①②④ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線M的極坐標(biāo)方程為.

1)求C的極坐標(biāo)方程和曲線M的直角坐標(biāo)方程;

2)若MC只有1個公共點P,求m的值與P的極坐標(biāo)(,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種型號的農(nóng)機(jī)具零配件,為了預(yù)測今年7月份該型號農(nóng)機(jī)具零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度1月份至6月份該型號農(nóng)機(jī)具零配件的銷售量及銷售單價進(jìn)行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷售單價(元)

11.1

9.1

9.4

10.2

8.8

11.4

銷售量(千件)

2.5

3.1

3

2.8

3.2

2.4

1)根據(jù)16月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號農(nóng)機(jī)具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷售單價,才能使該月利潤達(dá)到最大?(計算結(jié)果精確到0.1

參考公式:回歸直線方程,

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯誤的是(

A.將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變

B.設(shè)有一個線性回歸方程,變量x增加1個單位時,y平均增加5個單位

C.設(shè)具有相關(guān)關(guān)系的兩個變量x,y的相關(guān)系數(shù)為r,則越接近于0,xy之間的線性相關(guān)程度越強(qiáng)

D.在一個列聯(lián)表中,由計算得的值,則的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列判斷正確的是(

A.的極大值點

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得成立

D.對任意兩個正實數(shù),且,若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)準(zhǔn)備組建“文科”興趣特長社團(tuán),由課外活動小組對高一學(xué)生文科、理科進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機(jī)抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計,將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.

理科方向

文科方向

總計

110

50

總計

1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?

2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是邊長,的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,上被切去的小正方形的兩個頂點,設(shè).

1)將長方體盒子體積表示成的函數(shù)關(guān)系式,并求其定義域;

2)當(dāng)為何值時,此長方體盒子體積最大?并求出最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“!、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機(jī)模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機(jī)產(chǎn)生之間取整數(shù)值的隨機(jī)數(shù),分別用,,代表“和”、“諧”、“!、“園”這四個字,以每三個隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下組隨機(jī)數(shù):

由此可以估計,恰好第三次就停止摸球的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案