13.在直三棱柱中,若∠BAC=,,則異面直線所成的角等于_________

 

【答案】

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(07年重慶卷理)(13分)

如圖,在直三棱柱ABC―中, AB = 1,;點D、E分別在上,且,四棱錐與直三棱柱的體積之比為3:5。

(1)求異面直線DE與的距離;(8分)

(2)若BC =,求二面角的平面角的正切值。(5分)

 
 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年重慶卷理)(13分)

如圖,在直三棱柱ABC―中, AB = 1,;點D、E分別在上,且,四棱錐與直三棱柱的體積之比為3:5。

(1)求異面直線DE與的距離;(8分)

(2)若BC =,求二面角的平面角的正切值。(5分)

 
 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)如圖,在直三棱柱ABC—中, AB = 1,

;點D、E分別在上,且,

四棱錐與直三棱柱的體積之比為3:5。

(1)求異面直線DE與的距離;

(2)若BC =,求二面角的平面角的正切值。

 
 


查看答案和解析>>

科目:高中數(shù)學 來源:2007年普通高等學校招生全國統(tǒng)一考試理科數(shù)學卷(重慶) 題型:解答題

(本小題滿分13分)如圖,在直三棱柱ABC—中, AB = 1,

;點D、E分別在上,且

四棱錐與直三棱柱的體積之比為3:5。

(1)求異面直線DE與的距離;(8分)

(2)若BC =,求二面角的平面角的正切值。(5分)

 
 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

如圖,在直三棱柱、中,平面丄平面.

(I)求證:AB 丄 BC

(II)若直線AC與平面所成的角為,二面角的大小為,試判斷的大小關系,并予以證明.

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案