設(shè)函數(shù)f(x) 是定義在R上的偶函數(shù),且對(duì)任意的x ÎR恒有f(x+1)=-f(x),已知當(dāng)x Î[0,1]時(shí),f(x)=3x.則
① 2是f(x)的周期; ② 函數(shù)f(x)的最大值為1,最小值為0;
③ 函數(shù)f(x)在(2,3)上是增函數(shù); ④ 直線x=2是函數(shù)f(x)圖象的一條對(duì)稱軸.
其中所有正確命題的序號(hào)是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
lgx |
3 |
π |
6 |
x2 |
25 |
y2 |
16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009屆高考數(shù)學(xué)二輪專(zhuān)題突破訓(xùn)練(概率) 題型:044
設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(3)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試寧夏卷數(shù)學(xué)理科 題型:044
設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(0,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com