已知函數(shù)f(x)=x|x-a|(a∈R).
(1)判斷f(x)的奇偶性;
(2)解關(guān)于x的不等式:f(x)≥2a2.
解:(1)當(dāng)a=0時(shí),
f(-x)=-x|-x|=-x|x|=-f(x),
∴f(x)是奇函數(shù).
當(dāng)a≠0時(shí),f(a)=0且f(-a)=-2a|a|.
故f(-a)≠f(a)且f(-a)≠-f(a).
∴f(x)是非奇非偶函數(shù).
(2)由題設(shè)知x|x-a|≥2a
2,
∴原不等式等價(jià)于
①
或
②
由①得
x∈∅.
由②得
當(dāng)a=0時(shí),x≥0.
當(dāng)a>0時(shí),
∴x≥2a.
當(dāng)a<0時(shí),
即x≥-a.
綜上
a≥0時(shí),f(x)≥2a
2的解集為{x|x≥2a};
a<0時(shí),f(x)≥2a
2的解集為{x|x≥-a}.
分析:(1)分a=0和a≠0兩種情況,依據(jù)函數(shù)奇偶性的定義判斷其奇偶性.
(2)將不等式的絕對(duì)值去掉,等價(jià)轉(zhuǎn)化為2個(gè)不等式組,分a=0、a>0、a<0三種情況來(lái)解不等式組,最后將得到的解集取并集.
點(diǎn)評(píng):本題考查函數(shù)奇偶性、絕對(duì)值不等式的解法.