已知橢圓+=1=1(a>b>0),點P為其上一點,F(xiàn)1、F2為橢圓的焦點,∠F1PF2的外角平分線為l,點F2關(guān)于l的對稱點為Q,F(xiàn)2Q交l于點R.
(1)當P點在橢圓上運動時,求R形成的軌跡方程;
(2)設點R形成的曲線為C,直線l:y=k(x+a)與曲線C相交于A、B兩點,當△AOB的面積取得最大值時,求k的值.

【答案】分析:(1)由于∠F1PF2的外角平分線為l,點F2關(guān)于l的對稱點為Q,F(xiàn)2Q交l于點R.所以|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,即點Q的軌跡是圓,從而可求R形成的軌跡方程;
(2)先將△AOB的面積表示為S△AOB=|OA|•|OB|•sinAOB=sinAOB,從而當∠AOB=90°時,S△AOB最大值為a2.  
故可求k的值.
解答:解:(1)∵點F2關(guān)于l的對稱點為Q,連接PQ,∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|
又因為l為∠F1PF2外角的平分線,故點F1、P、Q在同一直線上,設存在R(x,y),Q(x1,y1),F(xiàn)1(-c,0),F(xiàn)2(c,0).
|F1Q|=|F1P|+|PQ|=|F1P|+|PF2|=2a,則(x1+c)2+y12=(2a)2
又x1=2x-c,y1=2y
∴(2x2+(2y2=(2a)2,∴x2+y2=a2
故R的軌跡方程為:x2+y2=a2(y≠0)
(2)∵S△AOB=|OA|•|OB|•sinAOB=sinAOB
當∠AOB=90°時,S△AOB最大值為a2.  
此時弦心距|OC|=
在Rt△AOC中,∠AOC=45°,,∴
點評:若動點M(x,y)依賴已知曲線上的動點N而運動,則可將轉(zhuǎn)化后的動點N的坐標入已知曲線的方程或滿足的幾何條件,從而求得動點M的軌跡方程,此法稱為代入法,一般用于兩個或兩個以上動點的情況.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓G的中心是原點O,對稱軸是坐標軸,拋物線y2=4
3
x
的焦點是G的一個焦點,且離心率e=
3
2

(Ⅰ)求橢圓G的方程;
(Ⅱ)已知圓M的方程是x2+y2=R2(1<R<2),設直線l與圓M和橢圓G都相切,且切點分別為A,B.求當R為何值時,|AB|取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•閔行區(qū)二模)已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
,長軸兩端點為A、B,短軸上端點為C.
(1)若橢圓焦點坐標為F1(2
2
,0)、F2(-2
2
,0)
,點M在橢圓上運動,當△ABM的最大面積為3時,求其橢圓方程;
(2)對于(1)中的橢圓方程,作以C為直角頂點的內(nèi)接于橢圓的等腰直角三角形CDE,設直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作
CP
垂直于
CQ
,點P、Q在橢圓上,試問在y軸上是否存在一點T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點T的坐標和定值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰安二模)已知橢圓E:
x2
a2
+
y2
b2
 
=1(a>b>0)的左、右焦點分別為F1、F2,點P(x1,y1)是橢圓上任意一點,且|PF1|+|PF2|=4,橢圓的離心率e=
1
2

(I)求橢圓E的標準方程;
(II)直線PF1交橢圓E于另一點Q(x1,y2),橢圓右頂點為A,若
AP
AQ
=3,求直線PF1的方程;
(III)過點M(
1
4
x1
,0)作直線PF1的垂線,垂足為N,當x1變化時,線段PN的長度是否為定值?若是,請寫出這個定值,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓C與橢圓Γ:
x2
8
+
y2
4
=1
相似,且橢圓C的一個短軸端點是拋物線y=
1
4
x2
的焦點.
(Ⅰ)試求橢圓C的標準方程;
(Ⅱ)設橢圓E的中心在原點,對稱軸在坐標軸上,直線l:y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點,且與橢圓E交于H,K兩點.若線段AB與線段HK的中點重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•通州區(qū)一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
1
2
,右焦點為F(1,0).
(I)求橢圓C的方程;
(II)求經(jīng)過點A(4,0)且與橢圓C相切的直線方程;
(III)設P為橢圓C上一動點,以PF為直徑的動圓內(nèi)切于一個定圓E.求定圓E的方程.

查看答案和解析>>

同步練習冊答案