已知是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于兩點,若△是銳角三角形,則該雙曲線離心率的取值范圍是(   )
A.B.C.D.
A

試題分析:在雙曲線中,令x="-c" 得,y=±,∴A,B兩點的縱坐標分別為±. 由△ABF2是銳角三角形知,∠AF2F1,tan∠AF2F1=<tan=1,∴<1,c2-2ac-a2<0,e2-2e-1<0,∴1-<e<1+.又 e>1,∴1<e<1+,故選D.
點評:此類問題中判斷∠AF2F1,tan=<1,是解題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個焦點,,過且與坐標軸不平行的直線與橢圓交于兩點,如果的周長等于8。
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標及定值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知過拋物線的焦點且斜率為的直線與拋物線交于兩點,且,則                   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線的漸近線方程為,它的一個焦點是,則雙曲線的標準方程是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的焦點為,準線與軸的交點為,點上且,則△的面積為(   )
A.4 B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓:和圓,過橢圓上一點引圓的兩
條切線,切點分別為. 若橢圓上存在點,使得,則橢圓離心率的取值范圍
是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點的直線交直線,過點的直線軸于點,,.
(1)求動點的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點、,已知點的坐標為(-2,0),點Q(0,)在線段的垂直平分線上且≤4,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

ABC的兩個頂點坐標分別是B(0,6)和C(0,-6),另兩邊ABAC的斜率的乘積是-,求頂點A的軌跡方程.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在直線上,若存在過的直線交拋物線兩點,且,則稱點為“點”,那么下列結(jié)論中正確的是(   )
A.直線上的所有點都是“點”B.直線上僅有有限個點是“點”
C.直線上的所有點都不是“點”D.直線上有無窮多個點是“點”

查看答案和解析>>

同步練習(xí)冊答案