討論y=在[-1,1]上的單調性.
【答案】分析:有函數(shù)解析式y(tǒng)=可以知道該函數(shù)的定義域為[-1,1],有解析使得特點選擇復合函數(shù)的求單調區(qū)間的方法求解即可.
解答:解:此函數(shù)可以看成是由函數(shù)y=f(t)= 復合而成,對于f(t)在t≥0始終單調遞增,
對于t=1-x2,在x∈(-∞,-0)上單調遞增;在x∈[0,+∞)上單調遞減,
有復合函數(shù)單調性的“同增異減”法則,可以知道:
⇒-1≤x<0,即當x∈[-1,0)時.函數(shù)y=是單調遞增函數(shù);
⇒0≤x≤1,即當x∈[0,1]時,函數(shù)y=是單調遞減函數(shù).
點評:此題考查了復合函數(shù)的單調區(qū)間,用到了“同增異減”的法則去進行求函數(shù)的單調性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

討論y=
1-x2
在[-1,1]上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax3+bx(a≠0)圖象在點(1,f(1))處的切線與直線6x+y+7=0平行,導函數(shù)f′(x)的最小值為-12.
(1)求a、b的值;
(2)討論方程f(x)=m解的情況(相同根算一根).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)g(x)=
ax+b
x2+a
(a∈N*,b∈R)
的定義域為R,且恒有g(x)≤
1
2

(1)求a,b的值;
(2)寫出函數(shù)y=g(x)在[-1,1]上的單調性,并用定義證明;
(3)討論關于x的方程g(x)-t=0(t∈R)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

討論y=數(shù)學公式在[-1,1]上的單調性.

查看答案和解析>>

同步練習冊答案